

Welcome to AIMBAT’s documentation!

Contents:

	1. AIMBAT
	1.1. Overview

	1.2. Documentation

	1.3. Requirements

	1.4. Installation

	1.5. Citation

	1.6. Authors’ Contacts

	1.7. Contributors

	1.8. Licence

	2. Installation and Upgrades
	2.1. Requirements
	2.1.1. Python

	2.1.2. Compilers
	2.1.2.1. Fortran

	2.1.2.2. C

	2.1.3. Operating System

	2.2. Installing AIMBAT
	2.2.1. pip - Python package installer

	2.2.2. conda users

	2.2.3. Installing AIMBAT with pip

	2.2.4. Example Data

	2.3. Upgrading AIMBAT

	2.4. Uninstalling AIMBAT

	3. Using AIMBAT
	3.1. Seismic Analysis Code (SAC)

	3.2. SAC Input/Output procedures for AIMBAT
	3.2.1. Converting from SAC to PKL files

	3.2.2. Converting from PKL to SAC files

	3.3. Parameter Configuration
	3.3.1. Backend

	3.3.2. Configuration File
	3.3.2.1. Example of AIMBAT configuration file ttdefaults.conf

	3.4. SAC Data Access
	3.4.1. Python Object for SAC File
	3.4.1.1. egsac.py

	3.4.1.2. Resampling Seismograms

	3.4.2. Python Pickle for SAC Files

	3.4.3. SAC Plotting and Phase Picking

	3.4.4. SAC Plotting

	3.5. SAC Phase Picking

	3.6. Measuring Teleseismic Body Wave Arrival Times
	3.6.1. Automated Phase Alignment

	3.6.2. Picking Travel Times
	3.6.2.1. Getting into the right directory

	3.6.2.2. Running aimbat-ttpick

	3.6.2.3. Initial deselection of bad seismograms

	3.6.2.4. Align

	3.6.2.5. Sync, refine, and setting time window

	3.6.2.6. Filtering

	3.6.2.7. Finalize

	3.6.2.8. SACP2 to check for outlier seismograms

	3.6.2.9. Go through the badly aligned seismograms and realign the travel times manually

	3.6.3. What the Alignments Stand For

	3.6.4. Post Processing
	3.6.4.1. Getting the output

	3.6.4.2. Disclaimer about delay times

	3.6.4.3. Getting the stations of the seismograms chosen

	3.6.4.4. Visualizing Stations on a map

	3.6.5. Picking Travel Times does not work

	3.7. Alternative Qt GUI for Measuring Arrival Times

	4. Developing AIMBAT

	5. Citations

	6. Credits
	6.1. Lead Developers

	6.2. Contributers

	7. Changelog
	7.1. aimbat-v1.0.5

	7.2. aimbat-v1.0.4

	7.3. aimbat-v1.0.3

	7.4. aimbat-v1.0.2

	7.5. aimbat-v1.0.1

	7.6. aimbat-v1.0.0

	7.7. aimbat-v0.3-alpha1

	7.8. aimbat-v0.2

	7.9. aimbat-0.1.2

	7.10. aimbat-0.1.1

	7.11. aimbat-0.1

Indices and tables

	Index

	Module Index

	Search Page

1. AIMBAT

1.1. Overview

AIMBAT (Automated and Interactive Measurement of Body wave Arrival Times) is an
open-source software package for efficiently measuring teleseismic body wave arrival
times for large seismic arrays [LouVanDerLeeLloyd2013]. It is based on a widely used
method called MCCC (Multi-Channel Cross-Correlation) [VanDecarCrosson1990]. The package
is automated in the sense of initially aligning seismograms for MCCC, which is achieved
by an ICCS (Iterative Cross Correlation and Stack) algorithm. Meanwhile, a GUI
(graphical user interface) is built to perform seismogram quality control interactively.
Therefore, user processing time is reduced while valuable input from a user’s expertise
is retained. As a byproduct, SAC [GoldsteinDodge2003] plotting and phase picking
functionalities are replicated and enhanced.

Modules and scripts included in the AIMBAT package were developed using
Python [http://www.python.org/] and its open-source modules on the Mac OS X platform
since 2009. The original MCCC [VanDecarCrosson1990] code was transcribed into Python.
The GUI of AIMBAT was inspired and initiated at the
2009 EarthScope USArray Data Processing and Analysis Short Course [http://www.iris.edu/hq/es_course/content/2009.html].
AIMBAT runs on Mac OS X, Linux/Unix and Windows thanks to the platform-independent
feature of Python. It has been tested on Mac OS 10.6.8 and 10.7, and Fedora 29.

For more information visit the
project website [http://www.earth.northwestern.edu/~xlou/aimbat.html] or the
Pysmo repository [https://github.com/pysmo].

1.2. Documentation

For detailed installation and usage instructions see: https://aimbat.readthedocs.org.

1.3. Requirements

	Python version 3.6 or higher

	Fortran (optional, but highly recommended for better performance)

1.4. Installation

$ pip install pysmo.aimbat

1.5. Citation

AIMBAT: A Python/Matplotlib Tool for Measuring Teleseismic Arrival Times. Xiaoting Lou,
Suzan van der Lee, and Simon Lloyd (2013), Seismol. Res. Lett., 84(1), 85-93,
doi:10.1785/0220120033.

1.6. Authors’ Contacts

	Xiaoting Lou [http://geophysics.earth.northwestern.edu/people/xlou/aimbat.html] Email: xlou at u.northwestern.edu

	Suzan van der Lee [http://geophysics.earth.northwestern.edu/seismology/suzan/] Email: suzan at northwestern.edu

	Simon Lloyd [https://www.slloyd.net/] Email: simon at slloyd.net

1.7. Contributors

	Lay Kuan Loh

1.8. Licence

The AIMBAT software package is distributed under the
GNU General Public License Version 3 (GPLv3) [http://www.gnu.org/licenses/gpl.html]
as published by the Free Software Foundation.

Copyright (c) 2009-2019 Xiaoting Lou

2. Installation and Upgrades

2.1. Requirements

2.1.1. Python

AIMBAT is built on top of standard Python [https://www.python.org/] and uses several extra Python libraries as well. We develop and test AIMBAT on Python versions 3.6 and newer. AIMBAT may run on older versions too, but we strongly suggest upgrading Python should you be running an older version (not just for AIMBAT!).

2.1.2. Compilers

2.1.2.1. Fortran

Fortran is an optional dependency used to compile a fast cross-correlation routine during AIMBAT installation. AIMBAT will fall back to a Python cross-correlation routine if Fortran is not available, but it is slower. We therefore highly recommend installing a Fortran compiler (e.g. gfortran [https://gcc.gnu.org/fortran/]).

2.1.2.2. C

While AIMBAT itself does not use C, some of the Python libraries it uses potentially require a C compiler during installation. This may vary depending on computer platform, or Python version/distribution used.

2.1.3. Operating System

AIMBAT is designed to run on UNIX like systems (e.g. Mac OSX and Linux). Installation on Windows is probably possible (since Python can be installed on almost any platform), though untested.

2.2. Installing AIMBAT

2.2.1. pip - Python package installer

AIMBAT is available as a package from the Python Package Index [https://pypi.org/]. This means it can be easily installed with the pip command (available by default since Python version 3.4).

Caution

It is possible to have multiple versions of Python installed on a computer. If this is the case, then there will also be multiple versions of the pip command. It is therefore important to use the pip command belonging to the Python version you intend to use for AIMBAT! Running pip --version will show you which Python version it belongs to.

Note

On some systems Python 2 and Python 3 are installed alongside eachother. Typically there is a pip command belonging to Python 2 and a pip3 command belonging to Python 3.

2.2.2. conda users

If you are using conda to manage Python packages, we recommend installing AIMBAT dependencies with conda before installing AIMBAT with pip. To do so issue this command:

$ conda install scipy numpy matplotlib pyqtgraph pyyaml pyproj

Note

Similarly, if you are using a package manager on Linux, or something like brew or macports on OSX, you may want to install these dependencies (if available) via those mechanisms instead of pip.

2.2.3. Installing AIMBAT with pip

To install the latest stable version of AIMBAT and all dependencies not already installed, simply issue this command:

$ pip install pysmo.aimbat

Caution

Unless you know what you are doing, we recommend to not install AIMBAT with administrative priveliges (i.e. using sudo or the root account). If the above command fails due to insuffienct rights, run the same command with the --user flag:

$ pip install --user pysmo.aimbat

If you wish to install the latest developement version of AIMBAT instead of the stable release:

$ pip install git+https://github.com/pysmo/aimbat

Note

It is possible to install the stable release alongside the development version. Please read Developing AIMBAT for instructions.

2.2.4. Example Data

Get the repository data-example [https://github.com/pysmo/data-example] from Github. There is some example code inside data-example/example_pkl_files that will be needed for later demonstrations.

2.3. Upgrading AIMBAT

Upgrading AIMBAT with pip is done with the same command used to install, with the addition of the -U flag:

$ pip install -U pysmo.aimbat

Note

If you used the --user flag during installation you also need to use it while upgrading

2.4. Uninstalling AIMBAT

To remove aimbat from your system with pip run this command:

$ pip uninstall pysmo.aimbat

Note

Unfortunately pip currently does not remove dependencies that were automatically installed. We suggest running pip list to see the installed packages, which can then also be removed using pip uninstall

3. Using AIMBAT

3.1. Seismic Analysis Code (SAC)

AIMBAT uses Seismic Analysis Code (SAC) [http://www.iris.edu/files/sac-manual/] formatting for some of the files it runs and outputs. To get SAC, you will need to fill out a software request form available on the IRIS website.

3.2. SAC Input/Output procedures for AIMBAT

Aimbat converts SAC files to python pickle data structure to increase
data processing efficiency by avoiding frequent SAC file I/O.

Reading and writing SAC files is done only once each before and after data processing, and
intermediate processing is performed on python objects and pickles.

3.2.1. Converting from SAC to PKL files

Place the SAC files you want to convert to a pickle (PKL) file into the same folder.
Suppose, for instance, they are BHZ channels. Note that the SAC files must be of the
same channel. cd into that folder, and run:

aimbat-sac2pkl -s *.BHZ.sac

The output should be a PKL file in the same folder as the sac files.

[image: _images/sac_to_pkl_conversion.png]

3.2.2. Converting from PKL to SAC files

cd into the folder containing the PKL file that you wish to convert into SAC files, and run:

aimbat-sac2pkl --p2s <name-of-file>.pkl

The SAC files contained within will output into the same folder as the PKL file is stored in.

[image: _images/pkl_to_sac_conversion.png]

3.3. Parameter Configuration

3.3.1. Backend

Matplotlib [http://matplotlib.org/contents.html] works with six GUI (Graphical User Interface) toolkits:

	WX

	Tk

	Qt(4)

	FTK

	Fltk

	macosx

The GUI of AIMBAT uses the following to support interactive plotting:

	GUI neutral widgets [http://matplotlib.org/api/widgets_api.html]

	GUI neutral event handling API (Application Programming Interface) [http://matplotlib.org/users/event_handling.html]

Visit these pages for an explanation of the backend [http://matplotlib.org/faq/usage_faq.html#what-is-a-backend] and how to customize it [http://matplotlib.org/users/customizing.html#customizing-matplotlib].

AIMBAT uses the default toolkit Tk and backend TkAgg.

In the latest version, user does not need to setup the backend for the SAC plotting functions.

3.3.2. Configuration File

Parameters for the package can be set up by a configuration file ttdefaults.conf, which is interpreted by the module ConfigParser. This configuration file is searched in the following order:

	file ttdefaults.conf in the current working directory

	file .aimbat/ttdefaults.conf in your HOME directory

	a file specified by environment variable TTCONFIG

	file ttdefaults.conf in the directory where AIMBAT is installed

Python scripts in the <pkg-install-dir>/pysmo-aimbat-0.1.2/scripts can be executed from the command line. The command line arguments are parsed by the optparse module to improve the scripts’ exitability. If conflicts existed, the command line options override the default parameters given in the configuration file ttdefaults.conf. Run the scripts with the -h option for the usage messages.

3.3.2.1. Example of AIMBAT configuration file ttdefaults.conf

	ttdefaults.conf

	Description

	[sacplot]

	

	colorwave = blue

	Color of waveform

	colorwavedel = gray

	Color of waveform which is deselected

	colortwfill = green

	Color of time window fill

	colortwsele = red

	Color of time window selection

	alphatwfill = 0.2

	Transparency of time window fill

	alphatwsele = 0.6

	Transparency of time window selection

	npick = 6

	Number of time picks (plot picks: t0-t5)

	pickcolors = kmrcgyb

	Colors of time picks

	pickstyles

	Line styles of time picks (use second one if ran out of color)

	figsize = 8 10

	Figure size for plotphase.py

	rectseis = 0.1 0.06 0.76 0.9

	Axes rectangle size within the figure

	minspan = 5

	Minimum sample points for SpanSelector to select time window

	srate = -1

	Sample rate for loading SAC data.
Read from first file if srate < 0

	[sachdrs]

	twhdrs = user8 user9

	SAC headers for time window beginning and ending

	ichdrs = t0 t1 t2

	SAC headers for ICCS time picks

	mchdrs = t2 t3

	SAC headers for MCCC input and output time picks

	hdrsel = kuser0

	SAC header for seismogram selection status

	qfactors = ccc snr coh

	Quality factors: cross-correlation coefficient,
signal-to-noise ratio, time domain coherence

	qheaders = user0 user1 user2

	SAC Headers for quality factors

	qweights = 0.3333 0.3333 0.3333

	Weights for quality factors

	[iccs] or Align/Refine

	

	srate = -1

	Sample rate for loading SAC data. Read from first file if srate < 0

	xcorr_modu = xcorrf90

	Module for calculating cross-correlation:
xcorr for Numpy or xcorrf90 for Fortran

	xcorr_func = xcorr_fast

	Function for calculating cross-correlation:
xcorr_full/fast/faster, reverse polarity allowed
xcorr_full/fast/faster_polarity, reverse polarity not allowed

	shift = 10

	Sample shift for running coarse cross-correlation

	maxiter = 10

	Maximum number of iteration

	convepsi = 0.001

	Convergence criterion: epsilon

	convtype = coef

	Type of convergence criterion: coef for correlation coefficient,
or resi for residual

	stackwgt = coef

	Weight each trace when calculating array stack

	fstack = fstack.sac

	SAC file name for the array stack

	[mccc]

	

	srate = -1

	Sample rate for loading SAC data.
Read from first file if srate \(< 0\)

	ofilename = mc

	Output file name of MCCC.

	xcorr_modu = xcorrf90

	Module for calculating cross-correlation:
xcorr for Numpy or xcorrf90 for Fortran

	xcorr_func = xcorr_fast

	Function for calculating cross-correlation:
xcorr_full/fast/faster, reverse polarity allowed
xcorr_full/fast/faster_polarity, reverse polarity not allowed

	shift = 10

	Sample shift for running coarse cross-correlation

	extraweight = 1000

	Weight for the zero-mean equation in MCCC weighted lsqr solution

	lsqr = nowe

	Type of lsqr solution: no weight

	#lsqr = lnco

	Type of lsqr solution: weighted by correlation coefficient,
solved by lapack

	#lsqr = lnre

	Type of lsqr solution: weighted by residual, solved by lapack

	rcfile = .mcccrc

	Configuration file for MCCC parameters (deprecated)

	evlist = event.list

	File for event hypocenter and origin time (deprecated)

	signal

	

	tapertype = hanning

	Taper type

	taperwidth = 0.1

	Taper width

	fhdrBand = kuser1

	SAC Header to store filter type

	fhdrApply = kuser1

	SAC Header to store applying filter or not

	fhdrRevPass = user4

	SAC Header to store reverse pass of filter

	fhdrLowFreq = user5

	SAC Header to store low frequency of band pass filter

	fhdrHighFreq = user6

	SAC Header to store high frequency of band pass filter

	fhdrOrder = user7

	SAC Header to store order of band pass filter

	fvalApply = 0

	Value of applying filter or not

	fvalBand = bandpass

	Value of filter type

	fvalRevPass = 0

	Value of reverse pass filter

	fvalLowFreq = 0.05

	Value of low frequency of band pass filter

	fvalHighFreq = 2

	Value of high frequency of band pass

	fvalOrder = 2

	Value oforder of band pass filter

3.4. SAC Data Access

NOTE: All .sac files must include origin time, hypocenter, as well as station coordinates and elevation in their headers.

3.4.1. Python Object for SAC File

The pysmo.core.sac package is developed to read and write individual SAC files.
The Python class SacIO of module pysmo.core.sac.sacio opens a SAC file and returns an object including data and all SAC header variables as their attributes. Modifications of object attributes are saved to file. It is written purely in Python so that it also runs with Jython [http://www.jython.org].

3.4.1.1. egsac.py

The <pkg-install-dir>/example-scripts/egsac.py script gives a simple example to read, resample, and plot a seismogram using pysmo, Scipy, and Matplotlib. You can type the codes in a Python/iPython shell, or run as a script in the data example directory <pkg-install-dir>/data-example/Event_2011.09.15.19.31.04.080, hereafter referred to as <example-event-dir>.

[image: _images/prog-egsac.png]

3.4.1.2. Resampling Seismograms

In this example, a SAC file named TA.109C.__.BHZ.sac is read in as a sacfile object. The time array is calculated from SAC headers. The data array is resampled from interval 0.025 to 2.0 seconds using Scipy’s signalprocessing module.

Add the following codes to write the resampled seismogram to file TA.109C.__.BHZ.sac:

sacobj.delta = deltanew
sacobj.npts = nptsnew
sacobj.data = y2

[image: _images/egsac-109c.png]

3.4.2. Python Pickle for SAC Files

The pysmo.core.sac.sacio module converts SAC files to SacIO objects. Any modification of the objects are instantly written to files. In data processing, the user may want to abandon changes made earlier, which brings the need of a buffer for the SacIO objects.

The SacDataHdrs class in the pysmo.aimbat.sacpickle module is written on top of pysmo.SacIO to serves this purpose by reading a SAC file and returning a sacdh object that is very similar to the sacfile object. Essentially, the sacdh object is a copy of the sacfile object in the memory, except that SAC headers ‘t0-t9’, ‘user0-user9’, and ‘kuser0-kuser2’ are saved in three Python lists.

A gsac object of the SacGroup class consists of a group of sacdh objects from event-based SAC data files, earthquake hypocenter information, and station locations.
An additional step is required to save changes in the gsac object to files.

In order to avoid frequent SAC file I/O, the pickle/cPickle module is used for serializing and de-serializing the gsac object structure. Thus the data processing efficiency is improved because reading and writing of SAC files are done only once each before and after data processing. Script aimbat-sac2pkl does the conversions between SAC files and Python pickles.

Its usage message can be printed out by running at command line:

aimbat-sac2pkl -h

and the result is displayed in the figure below. For example, in the data example directory <example-event-dir>, run:

aimbat-sac2pkl -s *Z -o 20110915.19310408.bhz.pkl -d 0.025

to read 163 vertical component seismograms at a sample interval of 0.025 s and convert to a gsac object, which is saved in the pickle file 20110915.19310408.bhz.pkl.

To save disk space, compressed pickle files in gz and bz2 formats can be generated by:

aimbat-sac2pkl -s *Z -o 20110915.19310408.bhz.pkl -d 0.025 -z gz
aimbat-sac2pkl -s *Z -o 20110915.19310408.bhz.pkl -d 0.025 -z bz2

at the cost of more CPU time.

After processing, run:

aimbat-sac2pkl 20110915.19310408.bhz.pkl -p

to convert the pickle file to SAC files.

[image: _images/help-sac2pkl.png]
See the doc string of pysmo.aimbat.sacpickle by typing in a python console:

from pysmo.aimbat import sacpickle
print(sacpickle.__doc__)

and also the documentation on pickle [http://docs.python.org/library/pickle.html] for more information about the Python data structure, pickling, and unpickling.

3.4.3. SAC Plotting and Phase Picking

[image: _images/help-sacplot.png]
SAC plotting and phase picking functionalities are replicated and enhanced based on the GUI neutral widgets (such as Button and SpanSelector) and the event (keyboard and mouse events such as key_press_event and mouse_motion_event handling API of Matplotlib.

They are implemented in two modules, pysmo.aimbat.plotphase and pysmo.aimbat.pickphase, which are used by corresponding scripts aimbat-sacplot and aimbat-sacppk executable at command line. Their help messages are displayed in the figures below.

[image: _images/help-sacppk.png]
[image: _images/prog-egplot.png]

3.4.4. SAC Plotting

Options “-i, -z, -d, -a, and -b” of aimbat-sacplot set the seismogram plotting baseline as file index, zero, epicentral distance in degrees, azimuth, and back-azimuth, respectively.
The user can run aimbat-sacplot directly with the options, or run individual scripts
aimbat-sacp1, aimbat-sacp2, aimbat-sacprs, aimbat-sacpaz, and aimbat-sacpbaz, which preset the baseline options and plot seismograms in SAC p1 style, p2 style, record section, and relative to azimuth and back-azimuth. The following commands are equivalent:

aimbat-sacplot -i, aimbat-sacp1
aimbat-sacplot -z, aimbat-sacp2
aimbat-sacplot -d, aimbat-sacprs
aimbat-sacplot -a, aimbat-sacpaz
aimbat-sacplot -b, aimbat-sacpbaz

Input data files need to be supplied to the scripts in the form of either a list of SAC files or a pickle file that includes multiple SAC files. For example, a bhz.pkl file is generated from 22 vertical component seismograms TA.[1-K]*Z by running:

aimbat-sac2pkl TA.[1-K]*BHZ -o bhz.pkl -d0.025

in the data example directory <example-event-dir>. Then the two commands are equivalent:

aimbat-sacp1 TA.[1-K]*Z

or:

aimbat-sacp1 bhz.pkl

For large numbers of seismograms, the pickle file is suggested because of faster loading.

Besides using the standard aimbat-sacplot script, the user can modify its getAxes function in their own script to customize figure size and axes attributes. Script egplot.py is such an example in which SAC p1, p2 styles and record section plotting are drawn in three axes in the same figure canvas. Run:

egplot.py TA.[1-K]*Z -f1 -C

at command line to produce the figure below.

[image: _images/egplot.png]
The “-C” option uses random color for each seismogram.
The “-f1” option fills the positive signals of waveform with less transparency.
In the script, “opts.ynorm” sets the waveform normalization and “opts.reltime=0” sets the time axis relative to time pick t0.

An improvement over SAC is that the program outputs the filename when the seismogram is clicked on by the mouse. This is enabled by the event handling API and is mostly introduced for use in SAC p2 style plotting when seismograms are plotted on top of each other. It is especially useful when a large number of seismograms create difficulties in labeling.

Another improvement is easier window zooming enabled by the SpanSelector widget and the event handling API. Select a time span by mouse clicking and dragging to zoom in a waveform section.
Press the ‘z’ key to zoom out to the previous time range.

3.5. SAC Phase Picking

SAC plotting (pysmo.aimbat.plotphase) does not involve change in data files, but phase picking (pysmo.aimbat.pickphase) does. A GUI is built for the user to interactively pick phase arrival times. The figure below is an example screen shot running:

aimbat-sacppk 20110915.19310408.bhz.pkl -w

in the data example directory <example-event-dir>.

Following SAC convention, the user can set a time pick by pressing the ‘t’ key and number keys ‘0-9’. The x location of the mouse position is saved to corresponding SAC headers ‘t0-t9’.
Time window zooming in pysmo.aimbat.pickphase is implemented in the same way as in pysmo.aimbat.plotphase to replace SAC’s combination of the ‘x’ key and mouse click.
Zooming out key is set to ‘z’ because the ‘o’ key is used for another purpose by Matplotlib.
The filename printing out by mouse clicking feature is also available in pysmo.aimbat.pickphase.

A major improvement over SAC is picking a time window in addition to time picks.
Pressing the ‘w’ key to save the current time axis range to two user-defined SAC header variables. A transparent green span is plotted within the time window, as shown in the figure below.

[image: _images/sacppk.png]
Another major improvement involves quality control with convenient operations to (de)select seismograms. In the GUI above, there are two divisions of selected and deleted seismograms.
Selected seismograms with a positive trace number are displayed with blue wiggles, while deleted seismograms with negative trace numbers are plotted in gray. The user can simply click on a certain seismogram to switch the selection status, either to exclude it or bring it back for inclusion. The trace selection status is stored in a user-defined SAC header variable.

In SAC, command ppk p 10 plots 10 seismograms on each page. Pressing the ‘b’ and ‘n’ keys to navigate through pages. The number of seismograms plotted on each page is controlled by command line option:

-m maxsel maxdel

for aimbat-sacppk. The Prev and Next buttons are for page navigation and the Save Button saves the change in time picks and time window to files. The default values for maxsel and maxdel are 25 and 5, which means a maximum of 30 seismograms on each page.

In the figure displayed, there are 26 seismograms on the first page because only 1 seismogram is deleted. On the next page, there are 30 selected seismograms. To plot 50 seismograms on each page, run:

aimbat-sacppk 20110915.19310408.bhz.pkl -w -m 45 5

and there would be 4 total pages and 13 seismograms on the last page.

To plot seismograms relative to time pick t0 and fill the positive and negative wiggles of waveform, run:

aimbat-sacppk 20110915.19310408.bhz.pkl -w -r0 -f1

To sort seismograms by epicentral distance in increase and decrease orders, run:

aimbat-sacppk 20110915.19310408.bhz.pkl -w -sdist
aimbat-sacppk 20110915.19310408.bhz.pkl -w -sdist-

Sorting by azimuth and back-azimuth is similar:

aimbat-sacppk 20110915.19310408.bhz.pkl -w -saz
aimbat-sacppk 20110915.19310408.bhz.pkl -w -sbaz

The help message of the aimbat-iccs script is shown below:

[image: _images/help-iccs.png]
The help message of the aimbat-mccs script is shown below:

[image: _images/help-mccc.png]

3.6. Measuring Teleseismic Body Wave Arrival Times

The core idea in using AIMBAT to measure teleseismic body wave arrival times has two parts:

	automated phase alignment, to reduce user processing time, and

	interactive quality control, to retain valuable user inputs.

3.6.1. Automated Phase Alignment

The ICCS algorithm calculates an array stack from predicted time picks, cross-correlates each seismogram with the array stack to find the time lags at maximum cross-correlation, then uses the new time picks to update the array stack in an iterative process. The MCCC algorithm cross-correlates each possible pair of seismograms and uses a least-squares method to calculate an optimized set of relative arrival times. Our method combines ICCS and MCCC in a four-step procedure using four anchoring time picks \(_0T_i,\,_1T_i,\,_2T_i,\) and \(_3T_i\).

	Coarse alignment by ICCS

	Pick phase arrival at the array stack

	Refined alignment by ICCS

	Final alignment by MCCC

The one-time manual phase picking at the array stack in step (b) allows the measurement of absolute arrival times. The detailed methodology and procedure can be found in [LouVanDerLee2013].

Time picks and their SAC headers used in the procedure for measuring teleseismic body wave arrival times.

	Step

	Algorithm

	Input

	Output

	Time Window

	Time Pick

	Time Header

	Time Pick

	Time Header

	
	

	ICCS

	\(W_a\)

	\(_0T_i\)

	T0

	\(_1T_i\)

	T1

	
	

	ICCS

	\(W_b\)

	\(_2T'_i\)

	T2

	\(_2T_i\)

	T2

	
	

	MCCS

	\(W_b\)

	\(_2T_i\)

	T2

	\(_3T_i\)

	T3

The ICCS and MCCC algorithms are implemented in two modules pysmo.aimbat.algiccs and pysmo.aimbat.algmccc, and can be executed in scripts iccs.py and mccc.py respectively.

3.6.2. Picking Travel Times

This section explains how to run the program aimbat-ttpick to get the travel times you want.

3.6.2.1. Getting into the right directory

In the terminal, cd into the directory with all of the pkl files you want to run. You want to run either the BHT or BHZ files. BHT files are for S-waves and BHZ files are for P-waves. PKL is a bundle of SAC files. Each SAC file is a seismogram, but since there may be many seismograms from various stations for each event, we bundle them into a PKL file so we only have to import one file into AIMBAT, not a few hundred of them.

3.6.2.2. Running aimbat-ttpick

Run aimbat-ttpick -p P <path-to-pkl-file> for BHZ files or aimbat-ttpick -p S <path-to-pkl-file> for BHT files. A GUI should pop up if you successfully ran it. Note that if you click on the buttons, they will not work until you move your mouse off them; this is a problem we are hoping to fix.

You can get some example data to test this out by downloading the Github repository data-example [https://github.com/pysmo/data-example]. Now, cd into the folder example_pkl_files, which has several pickle files for seismic events. Type:

aimbat-ttpick -p P 20110915.19310408.bhz.pkl

and a python GUI should pop up.

[image: _images/pick_travel_times.png]
At the top of the GUI is the scaled sum of all of the seismograms known as the array stack, which gives a characteristic waveform of the event for the stations involved. Beneath this is a page of seismograms, with the corresponding station and various quality factors listed on the right. CCC is the cross-correlation coefficient between that seismogram and the array stack, SNR is the signal-to-noise ratio, and COH is the coherence between that seismogram and the array stack.

3.6.2.3. Initial deselection of bad seismograms

Bad seismograms are those whose waveforms look nothing like the array stack above. By default, the seismograms are sorted by quality, so bad seismograms will likely be at the top. In order to deselect these, click on the waveforms themselves (not the fill) and wait a second or two for them to turn gray. The user can develop criteria for which seismograms to deselect and which to keep. Simply deselecting all seismograms below a certain quality threshold can decrease time but may lead to good seismograms being deselected or bad seismograms remaining.

Remember to save your work periodically once you start picking your travel times. Otherwise, if AIMBAT crashes, you will lose your work.

3.6.2.4. Align

The first step after deselecting seismograms is to press Align. This will recalculate both the array stack and the T1 picks for the seismograms, not including the deselected seismograms. Do not press Align after pressing Sync unless you wish to remove any T2 picks that have been made.

3.6.2.5. Sync, refine, and setting time window

After hitting the Align button, place the cursor on the array stack where the first motion of the seismogram, either up or down, occurs. Press t and 2 simultaneously on the keyboard to select the arrival time. Now press Sync. Use the mouse to drag and select the desired time window on the seismogram on the array stack. This time window is the portion of the seismogram on which cross-correlation will be run. The time window should begin 2-10 seconds before the first arrival and include a few seconds of the first motion of the waveform. The final time window should be smaller than the default window to increase the accuracy of the cross-correlation.

[image: _images/selecting-time-window-highlight.png]
Next, set the cursor over the array stack and press the w key. If the new time window has been saved, a message noting the new size of the time window will be printed in the terminal. The entire width of the x-axis is now colored green and will be stored as the time window to use for the cross-correlations. Press Save headers only if you wish to keep this time window for future applications.

Now press Refine and all the seismograms will align with the smaller time window. Note that the Weighted average quality printed to the terminal may decrease significantly, but this is likely due to the fact that the time window is smaller than the original.

3.6.2.6. Filtering

If you wish to apply a filter to your data, hit the Filter button, and a window will pop up for you to use the Butterworth filter [http://en.wikipedia.org/wiki/Butterworth_filter] to filter your data.

[image: _images/filtering-interface.png]
The defaults used for filtering are:

	Variable

	Default

	Order

	2

	Filter Type

	Bandpass

	Low Frequency

	0.05 Hz

	High Frequency

	0.25 Hz

You can change the order and filter type by selecting the option you want. In order to set corner frequencies for the filter, select the low frequency and the high frequency you want on the lower figure by clicking. Press Apply to filter the seismograms when you are satisfied with the filter parameters chosen.

3.6.2.7. Finalize

Hit Finalize to run the multi-channel cross-correlation. Do not hit Align or Refine again, or all your previous picks will be written over. A warning will pop up to check if you really do want to hit these two buttons if you do click on them.

3.6.2.8. SACP2 to check for outlier seismograms

Hit SACP2 and go to the last figure, (d). Zoom in to have a better look. Zooming in doesn’t always work well; close and reopen the SACP2 window if there are problems.

Click on the outliers that stray from the main group of stacked seismograms. The terminal will output the names of the seismograms that you clicked on, so you can return to the main GUI window and readjust the travel times. Note: hitting SACP2 before hitting Finalize will often cause AIMBAT to close, so make sure you have finalized before using SACP2.

[image: _images/SACP2_popup.png]

3.6.2.9. Go through the badly aligned seismograms and realign the travel times manually

By default, the worst seismograms are on the first page, and as you click through the pages, the quality of the seismograms gradually gets better. Keep using t2 to realign the arrival times so that the peaks of all the seismograms are nicely aligned. Remember to zoom in to have a better look.

However, you may wish to sort the seismograms in alphabetical order or by azimuth so that you can find the bad seismogrrams and correct them more easily. Hit the Sort button and a window will pop up for you to choose which sorting method to use. In this case, choose File to sort the files by station name alphabetically, or choose AZ to sort the files by azimuth from the event epicenter. The seismograms are stretched to fit together, but they may be scaled differently.

3.6.3. What the Alignments Stand For

	T0: Theoretical Arrival

	T1: Pick from initial cross correlation

	T2: Travel Time pick

	T3: MCCC pick

	T4: Zoom in

3.6.4. Post Processing

3.6.4.1. Getting the output

In the same folder as the initial PKL file you ran aimbat-ttpick on, you can find the output list with extension <event name>.mcp, which contains the travel time arrivals.

[image: _images/output_list.png]
mccc delay is t3+average arrival times, and t0_times are the theoretical arrival times. delay_times are obtained by taking t3-t0.

3.6.4.2. Disclaimer about delay times

t0 depends on hypocenter location, origin time, and reference model. We compute the delay time by finding t3-t0, but it does not have elliptic, topological, or crust corrections.

3.6.4.3. Getting the stations of the seismograms chosen

Run getsta.py in the additional scripts (not on Github for now). It gives the unique list of stations where the seismograms came from. You need to run it with the list of all pkl files chosen after you saved to. To do this, type ./getsta.py *.pkl.

[image: _images/count_stations.png]

3.6.4.4. Visualizing Stations on a map

After running:

aimbat-ttpick <sac-files>

Hit Map of Stations in order to get a visual respresentation of where exactly each station is. Dots represent circles used for computing delay times; black triangles represent discarded stations. Click on a dot to get the station name in the terminal.

[image: _images/basemap_stations.png]

3.6.5. Picking Travel Times does not work

If you run aimbat-ttick <Event name>.bhz.pkl, a GUI will pop up for you to manually pick the travel times by pressing the keyboard. If typing on the keyboard as directed does not allow you to pick travel times, it could be a problem with the keyboard settings, or the matplotlib backend.

To fix this, first look for the .matplotlib directory. It is hidden in your home directory, so do ls -a to find it.

Once you have found the .matplotlib directory, cd into it, and then look for the matplotlibrc file.
Inside that file, ensure the backend is set to:

backend : TkAgg

Make sure to comment out the other backends.

3.7. Alternative Qt GUI for Measuring Arrival Times

The Matplotlib [http://matplotlib.org/contents.html] GUI is slow for interactive plotting.
An additional GUI based on pyqtgraph [http://www.pyqtgraph.org/] was built since v1.0.0 to speed up plotting.
Similar to the old GUI, run:

aimbat-qttpick <path-to-pkl-file>

to launch the Qt GUI. Phase of the seismogram (P or S), if not given in command line, can be automatically found based on file names including BHZ or BHT. Here is aGn example snapshot:

[image: _images/qttpick_gui.png]
The AIMBAT philosophy of using the five-step (Align, Pick, Sync, Refine, and Finalize) procedure for automated and interactive phase arrival time measurement is the same.

Some GUI behavior remains the same:

	the phase picking steps of Align, Pick, Sync, Refine, and Finalize.

	mouse clicking waveforms to change trace selection status.

	keyboard interaction: t[0-9] to pick time, and w to set time window.

	Click Button Sac P2 to overlay all traces relative to time picks

Some components are different:

	Choose sort and filter options in a parameter tree and apply in the same GUI window.

	All traces plotted in one long page, instead of multiple pages.

	Still Possible to plot a subset of traces. Click button to add more traces to the plotting window.

	Pyqtgraph mouse events [http://www.pyqtgraph.org/documentation/mouse_interaction.html]: e.g., right mouse button drag to zoom in and out.

	Time window is plotted as a pyqtgraph.LinearRegionItem [http://www.pyqtgraph.org/documentation/graphicsItems/linearregionitem.html] instead of Matplotlib Span Selector. To change time window size, just drag either side line and move. Still press key w to set time window.

	A vertical hair indicating the time axis value is always plotted follow the mouse movement.

In the above example, 37 selected seismograms are plotted initially. During the arrival time measurement procedure, traces sorting order is changed after time window size or sorting parameters are changed. Trace 37, 38, 39 are missing in the GUI. You can optionally click Plot More Traces Button to fill the gap. You can also zoom out vertically and plot more traces.

Here is an example of filtering seismograms. First choose filtering parameters in the parameter tree and test on the stack by clicking Button Confirm_Filt_Parameters and Button Filter on Stack/Traces. Then applied filter to traces after parameters are finalized.

[image: _images/qttpick_gui_filter_stack.png]
[image: _images/qttpick_gui_filter_trace.png]
Some QC tools are available in this Qt GUI. Click Button Sac P1 and Sac P2 to plot traces relative to four time picks T0, T1, T2, and T3. Click Button Plot Delay Times to plot absolute delay times in a map view.

[image: _images/qttpick_gui_p1.png]
[image: _images/qttpick_gui_p2.png]
[image: images/20110915.19310408.mcp.png]
More details might be added here in the future.

4. Developing AIMBAT

For setting up an environment for development of aimbat AIMBAT please follow the instructions on the pysmo development [https://pysmo.readthedocs.io/en/latest/developing.html] page.

Caution

Please adjust the URLs from github.com:pysmo/pysmo.git to github.com:pysmo/aimbat.git!

5. Citations

[GoldsteinDodge2003]
Goldstein, P., D. Dodge, M. Firpo, and L. Minner (2003), SAC2000: Signal processing and analysis tools for seismologists and engineers, International Geophysics, 81, 1613–1614.

[Hunter2007]
Hunter, J. (2007), Matplotlib: A 2D Graphics Environment, Computing in Science & Engineering, 3(9), 90–95.

[LouVanDerLeeLloyd2013]
AIMBAT: A Python/Matplotlib Tool for Measuring Teleseismic Arrival Times. Xiaoting Lou, Suzan van der Lee, and Simon Lloyd (2013), Seismol. Res. Lett., 84(1), 85-93, doi:10.1785/0220120033.

[VanDecarCrosson1990]
VanDecar, J. C., and R. S. Crosson (1990), Determination of teleseismic relative phase arrival times using multi-channel cross-correlation and least squares, Bulletin of the Seismological Society of America, 80(1), 150–169.

[BulandChapman1983]
Ray Buland and C. H. Chapman (1983), The Computation of Seismic Travel Times, Bulletin of the Seismological Society of America, 73(5), 1271-1302.

6. Credits

6.1. Lead Developers

	Lay Kuan Loh [http://lkloh2410.wordpress.com/] Email: lloh at ece.cmu.edu

	Xiaoting Lou [http://www.earth.northwestern.edu/~xlou/Welcome.html] Email: xlou at u.northwestern.edu

	Suzan van der Lee [http://www.earth.northwestern.edu/research/suzan/] Email: suzan at earth.northwestern.edu

	Simon Lloyd [https://www.slloyd.net/] Email: simon at slloyd.net

6.2. Contributers

7. Changelog

7.1. aimbat-v1.0.5

Aug 18, 2019

Main contributor: smlloyd, xlougeo.

	Lots of code clean and restructure, including src, docs, and tests.

	Package installation: make fortran optional, update dependencis, update travis, setup pipenv.

	Update documentation.

	Bug fixes.

7.2. aimbat-v1.0.4

Dec 23, 2018

	Add SAC P1 Button to the main GUI

	Plot only a subset of traces for faster data QC and (de)selection. All labels are plotted. Add a button to plot more traces

7.3. aimbat-v1.0.3

Dec 7, 2018

	Some GUI setting changes

7.4. aimbat-v1.0.2

Dec 5, 2018

	Add option to plot simple delay time map by matplotlib.pyplot

7.5. aimbat-v1.0.1

Dec 4, 2018

	Fix bugs in changing trace selection status (QC), manual phase picking, and trace label.

	Change in GUI settings. Using right button dragging is enough and give up on QScrollArea.

	In cross-correlation, do not allow reverse polarity which causes cycle skipping too often.

7.6. aimbat-v1.0.0

Dec 3, 2018

Main contributor: smlloyd:

	Use new pysmo.core.sac.SacIO (pysmo-pysmo-v0.7.0) instead of pysmo.sac.sacio.SacFile

	
	New setup.py:
	
	Wrap all scripts into a callable function and add them to entry_point, e.g., aimbat-ttpick is automatically generated in your bin folder.

	Use git commit/tag to determine version automatically.

	Setup travis

	Package uploaded to pypi.org for each release since this.

Main contributor: xlougeo, ASankaran:

	SAC plotting and aimbat-ttpick are still using Matplotlib GUI.

	
	New GUI (aimbat-qttpick) using pyqtgraph for fast plotting. Similar user interactions as v0.3:
	
	Key pressed event handler in pyqtgraph is redefined

	Use mouse to change time window and press key ‘w’ to set <– work on stack only

	Press key ‘t[0-9]’ to set time picks like SAC PPK <– work on both stack and traces

	Mouse click on waveform to change trace selection status <– work on trace only

	Better separation between data and plot.

	Filter and sort are both in the main GUI controlled by a parameter tree.

7.7. aimbat-v0.3-alpha1

June 3, 2018

Main contributor: xlougeo

	Upgrade to python3 (May not back-compatible with python2). No change in functionalities from v0.2.

7.8. aimbat-v0.2

Main contributor: lkloh

For changes made between Dec 19, 2012 (v0.1.2) and Aug 23, 2016:

	Added a warning button if you hit ICCS-A or ICCS-B button, to make sure do did not hit it by accident.

	Hitting one of those buttons will undo all the work you did in manually picking arrival times.

	Added a button to allow you to jump to the front page. Note that hitting MCCC again will do just that.

	Added a summary of the event at the top right hand corner: Magnitude, Location, Depth

	Added a GUI to allow sorting of the seismograms according to header, time difference, file name, …

	Added a button to return to original screen after you zoom in/out

7.9. aimbat-0.1.2

Dec 19, 2012

Main contributor: xlougeo

	Change sci format for scientific notation of sacp2: from 1e-5 to 10^{-5}

	Change font properties for station label to “monospace” for equal width

	Minor changes in program descriptions, example scripts

	Further code development on github.com after this version.

7.10. aimbat-0.1.1

Sep 27, 2012

Main contributor: xlougeo

	Change setup.py and package directory: modules –> src/pysmo/aimbat.

	AIMBAT becomes a part of pysmo (https://github.com/pysmo/aimbat).

	Python usage: import aimbat –> from pysmo import aimbat

	Minor changes in help messages for scripts using the OptionParser module.

	Adjust figsize-related function of ttpick.py to support backends other than Tk.

7.11. aimbat-0.1

Sep 19, 2012

Main contributor: xlougeo

First release on Northwestern website [https://www.earth.northwestern.edu/~xlou/aimbat.html]

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pysmo	

 	
 	
 pysmo.aimbat	

 	
 	
 pysmo.aimbat.algmccc	

 	
 	
 pysmo.aimbat.filtering	

 	
 	
 pysmo.aimbat.pickphase	

 	
 	
 pysmo.aimbat.plotphase	

 	
 	
 pysmo.aimbat.plotstations	

 	
 	
 pysmo.aimbat.plotutils	

 	
 	
 pysmo.aimbat.prepdata	

 	
 	
 pysmo.aimbat.qualctrl	

 	
 	
 pysmo.aimbat.qualsort	

 	
 	
 pysmo.aimbat.sacpickle	

 	
 	
 pysmo.aimbat.stationmapping	

 	
 	
 pysmo.aimbat.ttconfig	

 	
 	
 pysmo.aimbat.xcorr	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | W
 | X
 | Z

A

 	
 	addEarthquakeInfo() (pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	applyFilter() (pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	
 	axLimit() (in module pysmo.aimbat.plotutils)

 	(in module pysmo.aimbat.prepdata)

B

 	
 	baseAzim() (pysmo.aimbat.plotphase.SingleSeisGather method)

 	baseBAzim() (pysmo.aimbat.plotphase.SingleSeisGather method)

 	baseDist() (pysmo.aimbat.plotphase.SingleSeisGather method)

 	
 	baseDistkm() (pysmo.aimbat.plotphase.SingleSeisGather method)

 	baseIndex() (pysmo.aimbat.plotphase.SingleSeisGather method)

 	baseZero() (pysmo.aimbat.plotphase.SingleSeisGather method)

 	bounding_rectangle() (pysmo.aimbat.plotstations.PlotStations method)

C

 	
 	CCConfig (class in pysmo.aimbat.ttconfig)

 	ccff() (pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	ccim() (pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	ccStack() (pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	changeBase() (pysmo.aimbat.pickphase.PickPhase method)

 	changeColor() (pysmo.aimbat.pickphase.PickPhase method)

 	connect() (pysmo.aimbat.pickphase.PickPhase method)

 	(pysmo.aimbat.pickphase.PickPhaseMenu method)

 	(pysmo.aimbat.plotphase.SingleSeis method)

 	(pysmo.aimbat.plotphase.SingleSeisGather method)

 	(pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	
 	corrcff() (in module pysmo.aimbat.algmccc)

 	corrcff_fish() (in module pysmo.aimbat.algmccc)

 	corread() (in module pysmo.aimbat.algmccc)

 	correrr() (in module pysmo.aimbat.algmccc)

 	corrite() (in module pysmo.aimbat.algmccc)

 	corrmat() (in module pysmo.aimbat.algmccc)

 	corrmax() (in module pysmo.aimbat.algmccc)

 	corrnow() (in module pysmo.aimbat.algmccc)

 	corrwgt() (in module pysmo.aimbat.algmccc)

D

 	
 	dataNorm() (in module pysmo.aimbat.plotutils)

 	(in module pysmo.aimbat.prepdata)

 	dataNormWindow() (in module pysmo.aimbat.prepdata)

 	date2jul() (in module pysmo.aimbat.sacpickle)

 	disconnect() (pysmo.aimbat.pickphase.PickPhase method)

 	(pysmo.aimbat.pickphase.PickPhaseMenu method)

 	(pysmo.aimbat.plotphase.SingleSeis method)

 	(pysmo.aimbat.plotphase.SingleSeisGather method)

 	(pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	
 	disconnectPick() (pysmo.aimbat.pickphase.PickPhase method)

 	dismiss_sort() (pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	dopts() (in module pysmo.aimbat.plotphase)

E

 	
 	eventListName() (in module pysmo.aimbat.algmccc)

 	
 	extractData() (pysmo.aimbat.stationmapping.StationMapper method)

F

 	
 	fileZipMode() (in module pysmo.aimbat.sacpickle)

 	filter_connect() (pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	filtering() (pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	filtering_time_freq() (in module pysmo.aimbat.filtering)

 	
 	filtering_time_signal() (in module pysmo.aimbat.filtering)

 	findPhase() (in module pysmo.aimbat.prepdata)

 	finish() (pysmo.aimbat.pickphase.PickPhaseMenu method)

 	fron() (pysmo.aimbat.pickphase.PickPhaseMenu method)

G

 	
 	get_filter_params() (in module pysmo.aimbat.filtering)

 	getAxes() (in module pysmo.aimbat.pickphase)

 	(in module pysmo.aimbat.plotphase)

 	(in module pysmo.aimbat.plotutils)

 	(in module pysmo.aimbat.qualctrl)

 	getAzim() (pysmo.aimbat.plotphase.SingleSeisGather method)

 	getBandpassFreq() (pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	getBandtype() (pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	getBAzim() (pysmo.aimbat.plotphase.SingleSeisGather method)

 	getButterOrder() (pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	getDataOpts() (in module pysmo.aimbat.pickphase)

 	(in module pysmo.aimbat.plotphase)

 	(in module pysmo.aimbat.qualctrl)

 	getDefaults() (in module pysmo.aimbat.ttconfig)

 	getDist() (pysmo.aimbat.plotphase.SingleSeisGather method)

 	getFilterAxes() (pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	getFilterPara() (in module pysmo.aimbat.prepdata)

 	gethdr() (pysmo.aimbat.sacpickle.SacDataHdrs method)

 	getHighFreq() (pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	getIndex() (pysmo.aimbat.plotphase.SingleSeisGather method)

 	
 	getLowFreq() (pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	getOptions() (in module pysmo.aimbat.algmccc)

 	(in module pysmo.aimbat.pickphase)

 	(in module pysmo.aimbat.plotphase)

 	(in module pysmo.aimbat.qualctrl)

 	(in module pysmo.aimbat.qualsort)

 	(in module pysmo.aimbat.sacpickle)

 	getParams() (in module pysmo.aimbat.algmccc)

 	getParser() (in module pysmo.aimbat.ttconfig)

 	getPicks() (pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	getPlot() (pysmo.aimbat.plotphase.SingleSeisGather method)

 	getReversePassOption() (pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	getSortAxes() (pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	getWindow() (in module pysmo.aimbat.algmccc)

 	(pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	getXLimit() (pysmo.aimbat.pickphase.PickPhaseMenu method)

 	(pysmo.aimbat.plotphase.SingleSeisGather method)

 	getYLimit() (pysmo.aimbat.pickphase.PickPhaseMenu method)

 	(pysmo.aimbat.plotphase.SingleSeisGather method)

 	getZero() (pysmo.aimbat.plotphase.SingleSeisGather method)

H

 	
 	hdrtype() (in module pysmo.aimbat.qualsort)

I

 	
 	ignore() (pysmo.aimbat.plotutils.TimeSelector method)

 	indexBaseTick() (in module pysmo.aimbat.plotutils)

 	
 	initIndex() (pysmo.aimbat.pickphase.PickPhaseMenu method)

 	initPlot() (pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	initQual() (in module pysmo.aimbat.qualsort)

J

 	
 	jul2date() (in module pysmo.aimbat.sacpickle)

L

 	
 	labelSelection() (pysmo.aimbat.pickphase.PickPhaseMenu method)

 	labelStation() (pysmo.aimbat.pickphase.PickPhase method)

 	(pysmo.aimbat.plotphase.SingleSeisGather method)

 	
 	last() (pysmo.aimbat.pickphase.PickPhaseMenu method)

 	loadData() (in module pysmo.aimbat.sacpickle)

M

 	
 	main() (in module pysmo.aimbat.algmccc)

 	(in module pysmo.aimbat.pickphase)

 	(in module pysmo.aimbat.plotphase)

 	(in module pysmo.aimbat.qualctrl)

 	(in module pysmo.aimbat.sacpickle)

 	makeTime() (pysmo.aimbat.pickphase.PickPhase method)

 	(pysmo.aimbat.plotphase.SingleSeis method)

 	mccc() (in module pysmo.aimbat.algmccc)

 	(pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	MCConfig (class in pysmo.aimbat.ttconfig)

 	modifyFilterTextLabels() (pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	
 module

 	pysmo.aimbat

 	pysmo.aimbat.algmccc

 	pysmo.aimbat.filtering

 	pysmo.aimbat.pickphase

 	pysmo.aimbat.plotphase

 	pysmo.aimbat.plotstations

 	pysmo.aimbat.plotutils

 	pysmo.aimbat.prepdata

 	pysmo.aimbat.qualctrl

 	pysmo.aimbat.qualsort

 	pysmo.aimbat.sacpickle

 	pysmo.aimbat.stationmapping

 	pysmo.aimbat.ttconfig

 	pysmo.aimbat.xcorr

N

 	
 	next() (pysmo.aimbat.pickphase.PickPhaseMenu method)

O

 	
 	obj2sac() (in module pysmo.aimbat.sacpickle)

 	on_pick() (pysmo.aimbat.pickphase.PickPhase method)

 	on_press() (pysmo.aimbat.pickphase.PickPhase method)

 	on_select() (pysmo.aimbat.pickphase.PickPhaseMenu method)

 	
 	on_zoom() (pysmo.aimbat.pickphase.PickPhaseMenu method)

 	(pysmo.aimbat.plotphase.SingleSeisGather method)

 	(pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	onpick() (pysmo.aimbat.plotphase.SingleSeis method)

P

 	
 	paraDataOpts() (in module pysmo.aimbat.prepdata)

 	pickLegend() (in module pysmo.aimbat.plotutils)

 	PickPhase (class in pysmo.aimbat.pickphase)

 	PickPhaseMenu (class in pysmo.aimbat.pickphase)

 	PickPhaseMenuMore (class in pysmo.aimbat.qualctrl)

 	pkl2sac() (in module pysmo.aimbat.sacpickle)

 	plot2() (pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	plot_deleted_stations() (pysmo.aimbat.plotstations.PlotStations method)

 	plot_selected_stations() (pysmo.aimbat.plotstations.PlotStations method)

 	plot_selected_stations_color_delay_times() (pysmo.aimbat.plotstations.PlotStations method)

 	plot_stations() (pysmo.aimbat.plotstations.PlotStations method)

 	(pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	plotData() (pysmo.aimbat.stationmapping.StationMapper method)

 	plotDelay() (in module pysmo.aimbat.plotutils)

 	plotPicks() (pysmo.aimbat.pickphase.PickPhase method)

 	(pysmo.aimbat.pickphase.PickPhaseMenu method)

 	(pysmo.aimbat.plotphase.SingleSeis method)

 	(pysmo.aimbat.plotphase.SingleSeisGather method)

 	plotSeis() (pysmo.aimbat.pickphase.PickPhaseMenu method)

 	(pysmo.aimbat.plotphase.SingleSeisGather method)

 	plotSpan() (pysmo.aimbat.pickphase.PickPhaseMenu method)

 	(pysmo.aimbat.plotphase.SingleSeisGather method)

 	(pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	plotStack() (pysmo.aimbat.plotphase.SingleSeisGather method)

 	(pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	PlotStations (class in pysmo.aimbat.plotstations)

 	plotWave() (pysmo.aimbat.pickphase.PickPhase method)

 	(pysmo.aimbat.pickphase.PickPhaseMenu method)

 	(pysmo.aimbat.plotphase.SingleSeis method)

 	plotWindow() (pysmo.aimbat.pickphase.PickPhase method)

 	PPConfig (class in pysmo.aimbat.ttconfig)

 	
 	prepData() (in module pysmo.aimbat.prepdata)

 	prepStack() (in module pysmo.aimbat.prepdata)

 	prev() (pysmo.aimbat.pickphase.PickPhaseMenu method)

 	
 pysmo.aimbat

 	module

 	
 pysmo.aimbat.algmccc

 	module

 	
 pysmo.aimbat.filtering

 	module

 	
 pysmo.aimbat.pickphase

 	module

 	
 pysmo.aimbat.plotphase

 	module

 	
 pysmo.aimbat.plotstations

 	module

 	
 pysmo.aimbat.plotutils

 	module

 	
 pysmo.aimbat.prepdata

 	module

 	
 pysmo.aimbat.qualctrl

 	module

 	
 pysmo.aimbat.qualsort

 	module

 	
 pysmo.aimbat.sacpickle

 	module

 	
 pysmo.aimbat.stationmapping

 	module

 	
 pysmo.aimbat.ttconfig

 	module

 	
 pysmo.aimbat.xcorr

 	module

Q

 	
 	QCConfig (class in pysmo.aimbat.ttconfig)

 	
 	quit() (pysmo.aimbat.pickphase.PickPhaseMenu method)

R

 	
 	rcdef() (in module pysmo.aimbat.algmccc)

 	rcread() (in module pysmo.aimbat.algmccc)

 	rcwrite() (in module pysmo.aimbat.algmccc)

 	readPickle() (in module pysmo.aimbat.sacpickle)

 	replot() (pysmo.aimbat.pickphase.PickPhaseMenu method)

 	(pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	
 	replot_seismograms() (pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	resampleData() (pysmo.aimbat.sacpickle.SacDataHdrs method)

 	(pysmo.aimbat.sacpickle.SacGroup method)

 	resampleSeis() (in module pysmo.aimbat.sacpickle)

 	resetWindow() (pysmo.aimbat.pickphase.PickPhase method)

S

 	
 	sac2obj() (in module pysmo.aimbat.sacpickle)

 	sac2pkl() (in module pysmo.aimbat.sacpickle)

 	SacDataHdrs (class in pysmo.aimbat.sacpickle)

 	sacDataNorm() (in module pysmo.aimbat.prepdata)

 	SacGroup (class in pysmo.aimbat.sacpickle)

 	sacp1() (in module pysmo.aimbat.plotphase)

 	sacp1_standalone() (in module pysmo.aimbat.plotphase)

 	sacp2() (in module pysmo.aimbat.plotphase)

 	sacp2_standalone() (in module pysmo.aimbat.plotphase)

 	sacpaz() (in module pysmo.aimbat.plotphase)

 	sacpaz_standalone() (in module pysmo.aimbat.plotphase)

 	sacpbaz() (in module pysmo.aimbat.plotphase)

 	sacpbaz_standalone() (in module pysmo.aimbat.plotphase)

 	sacplot_standalone() (in module pysmo.aimbat.plotphase)

 	sacppk_standalone() (in module pysmo.aimbat.pickphase)

 	sacprs() (in module pysmo.aimbat.plotphase)

 	sacprs_standalone() (in module pysmo.aimbat.plotphase)

 	saveData() (in module pysmo.aimbat.sacpickle)

 	savesac() (pysmo.aimbat.sacpickle.SacDataHdrs method)

 	seisApplyFilter() (in module pysmo.aimbat.prepdata)

 	seisDataBaseline() (in module pysmo.aimbat.prepdata)

 	seisDataNorm() (in module pysmo.aimbat.prepdata)

 	seisSort() (in module pysmo.aimbat.prepdata)

 	seisTimeData() (in module pysmo.aimbat.prepdata)

 	seisTimeRefr() (in module pysmo.aimbat.prepdata)

 	seisTimeWindow() (in module pysmo.aimbat.prepdata)

 	seisUnApplyFilter() (in module pysmo.aimbat.prepdata)

 	seisWave() (in module pysmo.aimbat.prepdata)

 	seleSeis() (in module pysmo.aimbat.qualsort)

 	setFilterPara() (in module pysmo.aimbat.prepdata)

 	sethdr() (pysmo.aimbat.sacpickle.SacDataHdrs method)

 	sethdrs() (pysmo.aimbat.sacpickle.SacDataHdrs method)

 	setLabels() (pysmo.aimbat.pickphase.PickPhaseMenu method)

 	(pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	setLimits() (pysmo.aimbat.pickphase.PickPhaseMenu method)

 	shdo() (pysmo.aimbat.pickphase.PickPhaseMenu method)

 	shfp() (pysmo.aimbat.pickphase.PickPhaseMenu method)

 	
 	shod() (pysmo.aimbat.pickphase.PickPhaseMenu method)

 	show_station_name() (pysmo.aimbat.plotstations.PlotStations method)

 	SingleSeis (class in pysmo.aimbat.plotphase)

 	SingleSeisGather (class in pysmo.aimbat.plotphase)

 	sort_connect() (pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	sort_disconnect() (pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	sort_file() (pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	sort_haz() (pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	sort_hb() (pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	sort_hbaz() (pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	sort_hdelta() (pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	sort_hdist() (pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	sort_he() (pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	sort_hgcarc() (pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	sort_hkstnm() (pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	sort_hnpts() (pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	sort_hstla() (pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	sort_hstlo() (pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	sort_qall() (pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	sort_qccc() (pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	sort_qcoh() (pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	sort_qsnr() (pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	sorting() (pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	sortQual() (in module pysmo.aimbat.qualsort)

 	sortSeis() (in module pysmo.aimbat.pickphase)

 	(in module pysmo.aimbat.qualctrl)

 	sortSeisHeader() (in module pysmo.aimbat.qualsort)

 	sortSeisHeaderDiff() (in module pysmo.aimbat.qualsort)

 	sortSeisQual() (in module pysmo.aimbat.qualsort)

 	splitAxesH() (in module pysmo.aimbat.plotphase)

 	spreadButter() (pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	start() (pysmo.aimbat.stationmapping.StationMapper method)

 	StationMapper (class in pysmo.aimbat.stationmapping)

 	summarize_sort() (pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	sync() (pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	syncPick() (pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	syncWind() (pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

T

 	
 	taper() (in module pysmo.aimbat.sacpickle)

 	taperWindow() (in module pysmo.aimbat.sacpickle)

 	
 	time_to_freq() (in module pysmo.aimbat.filtering)

 	TimeSelector (class in pysmo.aimbat.plotutils)

U

 	
 	unapplyFilter() (pysmo.aimbat.qualctrl.PickPhaseMenuMore method)

 	
 	updateY() (pysmo.aimbat.pickphase.PickPhase method)

W

 	
 	windowData() (in module pysmo.aimbat.sacpickle)

 	windowIndex() (in module pysmo.aimbat.sacpickle)

 	windowTime() (in module pysmo.aimbat.sacpickle)

 	windowTimeData() (in module pysmo.aimbat.sacpickle)

 	
 	WriteFileOriginal() (in module pysmo.aimbat.algmccc)

 	WriteFileWithDelay() (in module pysmo.aimbat.algmccc)

 	writeHdrs() (pysmo.aimbat.sacpickle.SacDataHdrs method)

 	writePickle() (in module pysmo.aimbat.sacpickle)

 	writeToFile() (pysmo.aimbat.stationmapping.StationMapper method)

X

 	
 	xcorr_fast() (in module pysmo.aimbat.xcorr)

 	xcorr_fast_polarity() (in module pysmo.aimbat.xcorr)

 	xcorr_faster() (in module pysmo.aimbat.xcorr)

 	xcorr_faster_polarity() (in module pysmo.aimbat.xcorr)

 	
 	xcorr_full() (in module pysmo.aimbat.xcorr)

 	xcorr_full_polarity() (in module pysmo.aimbat.xcorr)

 	xcorr_same() (in module pysmo.aimbat.xcorr)

 	xcorr_select() (in module pysmo.aimbat.xcorr)

 	xcorr_select_polarity() (in module pysmo.aimbat.xcorr)

Z

 	
 	zipFile() (in module pysmo.aimbat.sacpickle)

 	
 	zoba() (pysmo.aimbat.pickphase.PickPhaseMenu method)

AIMBAT package

Submodules

algiccs.py

AIMBAT

AIMBAT (Automated and Interactive Measurement of Body wave Arrival Times)
is an open-source software package for efficiently measuring teleseismic
body wave arrival times for large seismic arrays (Lou et al., 2012). It is
based on a widely used method called MCCC (Multi-Channel Cross-Correlation)
developed by VanDecar and Crosson (1990). The package is automated in the
sense of initially aligning seismograms for MCCC which is achieved by an
ICCS (Iterative Cross Correlation and Stack) algorithm. Meanwhile, a
graphical user interface is built to perform seismogram quality control
interactively. Therefore, user processing time is reduced while valuable
input from a user’s expertise is retained. As a byproduct, SAC (Goldstein
et al., 2003) plotting and phase picking functionalities are replicated
and enhanced.

algmccc.py

Python module for the MCCC (Multi-Channel Cross-Correlation) algorithm (VanDecar and Cross, 1990).
Code transcribed from the original MCCC 3.0 fortran version using the same function names:

corread, corrmax, corrcff, correrr, corrmat, corrnow, corrwgt, corrite

	copyright:

	Xiaoting Lou, John VanDecar

	license:

	GNU General Public License, Version 3 (GPLv3)
http://www.gnu.org/licenses/gpl.html

	
pysmo.aimbat.algmccc.WriteFileOriginal(mcpara, solist, solution, outvar, outcc, itmean)

	

	
pysmo.aimbat.algmccc.WriteFileWithDelay(mcpara, solist, solution, outvar, outcc, t0_times, delay_times, itmean)

	

	
pysmo.aimbat.algmccc.corrcff(ccmatrix)

	Calculate mean and standard deviation of correlation coefficients.

	
pysmo.aimbat.algmccc.corrcff_fish(ccmatrix)

	Calculate mean and standard deviation of correlation coefficients
using Fisher’s transform:

z = 0.5 * ln((1+r)/(1-r))

Input: ccmatrix is the matrix of correlation coefficients.
Output: ccmean is transformed back but not ccstd.

Problem: zero division if correlation coefficient is 1.

	
pysmo.aimbat.algmccc.corread(saclist, ipick, timewindow, taperwindow, tapertype)

	Read data within timewindow+taperwindow (same length for each trace) for cross-correlation.

	
pysmo.aimbat.algmccc.correrr(dtmatrix, invmodel)

	Calculate the rms misfit between cross correlated derived relative delay times
and least-squares solution:

res_ij = dt_ij - (t_i - t_j)

	
pysmo.aimbat.algmccc.corrite(solist, mcpara, reftimes, solution, outvar, outcc)

	Write output file, set output time picks.

	
pysmo.aimbat.algmccc.corrmat(windata, reftimes, mcpara)

	
	Build matrices of cross-correlation derived relative delay times for least-squares solution.
	A * t = dt

invmatrix A: sparse n*(n-1)/2+1 by n coefficient matrix including zero mean constraint
invdata dt: cross-correlation derived relative delay times between every pair of stations
invmodel t: optimized relative delay times for each station

	
pysmo.aimbat.algmccc.corrmax(datai, timei, dataj, timej, mcpara)

	
	Calculate cross-correlation derived relative delay times by calling one of the xcorr functions.
	dt_ij = t_i - t_j - tau_max

where t_i and t_j are initial time picks for the i-th and j-th traces,
and tau_max is the time lag at maximum correlation

	
pysmo.aimbat.algmccc.corrnow(invmatrix, invdata)

	
	Solve A * t = dt by lease-squares without weighting:
	t = inv(A’A) * A’ * dt = 1/n * A’ * dt, where A’A = nI

	
pysmo.aimbat.algmccc.corrwgt(invmatrix, invdata, ccmatrix, resmatrix, wgtscheme='correlation', exwt=1000.0)

	
	Solve A * t = dt by weighted least-squares:
	t = inv(A’WA) * A’ * W * dt

W: n*(n-1)/2+1 by n*(n-1)/2+1 diagonal weighting matrix
exwt: weight for the extra equation of zero-meaning constraint

	
pysmo.aimbat.algmccc.eventListName(evlist='event.list', phase='S', isol='PDE')

	Read evlist (either event.list file or gsac.event list) for hypocenter and origin time.
Create output filename.

	
pysmo.aimbat.algmccc.getOptions()

	Parse arguments and options from command line.
No default value is given here because it will override values from configuration file.

	
pysmo.aimbat.algmccc.getParams(gsac, mcpara, opts=None)

	Get parameters for running MCCC.
Hierarchy: default config < gsac < .mcccrc < command line options

	
pysmo.aimbat.algmccc.getWindow(stkdh, ipick, twhdrs, taperwidth=0.1)

	Get timewindow and taperwindow from gsac.stkdh

	
pysmo.aimbat.algmccc.main()

	

	
pysmo.aimbat.algmccc.mccc(gsac, mcpara)

	Run MCCC.

	
pysmo.aimbat.algmccc.rcdef()

	Default values for the inherited .mcccrc file of MCCC 3.0

	
pysmo.aimbat.algmccc.rcread(rcfile='.mcccrc')

	Read .mcccrc file and return ipick, time window and taper window.

	
pysmo.aimbat.algmccc.rcwrite(ipick, timewindow, taperwindow, rcfile='.mcccrc')

	Write to .mcccrc file. Convert timewindow –> window, inset, taper.

filtering.py

	
pysmo.aimbat.filtering.filtering_time_freq(originalTime, originalSignalTime, delta, filterType, highFreq, lowFreq, order, runReversePass=False)

	

	
pysmo.aimbat.filtering.filtering_time_signal(originalSignalTime, delta, lowFreq, highFreq, filterType, order, MULTIPLE, runReversePass=False)

	

	
pysmo.aimbat.filtering.get_filter_params(delta, lowFreq, highFreq, filterType, order, MULTIPLE=3000)

	

	
pysmo.aimbat.filtering.time_to_freq(originalTime, originalSignalTime, delta)

	

pickphase.py

Python module for plot and pick phase (SAC PPK) on seismograms in one axes.

	Differences from plotphase.py:
	
	User interaction: set time picks and time window

	Plot: always plot time picks

	
	Plot: always use integer numbers (plot within +/-0.5) as ybases,
	but not dist/az/baz (even when sorted by d/a/b)

	Plot: can plot seismograms in multiple pages (page navigation).

	Normalization: can normalize within time window

	Keyboard and mouse actions:
	
	Click mouse to select a span to zoom in seismograms.

	Press ‘z’ to go back to last window span.

	Press ‘w’ to save the current xlimit as time window.

	Press ‘t[0-9]’ to set time picks like SAC PPK.

	Program structure:
	
	PickPhaseMenu
	||

PickPhase Button Front + Button Prev + Button Next + Button Last + Button Save + Button Quit

	copyright:

	Xiaoting Lou

	license:

	GNU General Public License, Version 3 (GPLv3)
http://www.gnu.org/licenses/gpl.html

	
class pysmo.aimbat.pickphase.PickPhase(sacdh, opts, axpp, ybase, color='b', linew=1, alpha=1)

	Bases: object

Plot one single seismogram with given attributes.
See self.on_press for options on setting time picks and time window.

	
changeBase(newbase)

	Change ybase of a seismogram.

	
changeColor()

	Change color of a seismogram based on selection status.

	
connect()

	

	
disconnect()

	

	
disconnectPick()

	

	
labelStation()

	Label the seismogram with file name or net.sta

	
makeTime()

	Create array x as time series and get reference time.

	
on_pick(event)

	Click a seismogram to show file name.

	
on_press(event)

	Key press event. Valid only if axpp contains event (within 0.5 from ybase).

Options:

	t + digits 0-9: set a time pick in SAC header.

	w: set the current xlim() as time window.

	
plotPicks()

	Plot time picks at ybase +/- 0.5

	
plotWave()

	Plot wiggled or filled waveform, which is normalized (if not stacking) and shifted to ybase.
Fill both plus and negative side of signal but with different transparency.

If opts.fill == 0: no fill.
If opts.fill > 0: alpha of negative side is a quarter of plus side.
If opts.fill < 0: alpha of plus side is a quarter of negative side.

	
plotWindow()

	Plot time window (xmin,xmax) with color fill.

	
resetWindow()

	Reset time window when a span is selected.

	
updateY(xxlim)

	Update ynorm for wave wiggle from given xlim.

	
class pysmo.aimbat.pickphase.PickPhaseMenu(gsac, opts, axs)

	Bases: object

Plot a group of seismogram gathers.
Set up axes attributes.
Create Button Save to save SAC headers to files.

	
connect()

	

	
disconnect(canvas)

	

	
finish()

	

	
fron(event)

	

	
getXLimit()

	Get x limit (relative to reference time)

	
getYLimit()

	Get y limit

	
initIndex()

	Initialize indices for page navigation.

	
labelSelection()

	Label selection status with transform (transAxes, transData).

	
last(event)

	

	
next(event)

	

	
on_select(xmin, xmax)

	Mouse event: select span.

	
on_zoom(event)

	Zoom back to previous xlim when event is in event.inaxes.

	
plotPicks()

	

	
plotSeis()

	

	
plotSpan()

	Create a SpanSelector for zoom in and zoom out.

	
plotWave()

	Plot waveforms for this page.

	
prev(event)

	

	
quit(event)

	

	
replot(ipage)

	Finish plotting of current page and move to prev/next.

	
setLabels()

	Set axes labels and page label

	
setLimits()

	Set axes limits

	
shdo(event)

	

	
shfp(event)

	

	
shod(event)

	

	
zoba(event)

	

	
pysmo.aimbat.pickphase.getAxes(opts)

	Get axes for plotting

	
pysmo.aimbat.pickphase.getDataOpts()

	Get SAC Data and Options

	
pysmo.aimbat.pickphase.getOptions()

	Parse arguments and options.

	
pysmo.aimbat.pickphase.main()

	

	
pysmo.aimbat.pickphase.sacppk_standalone()

	

	
pysmo.aimbat.pickphase.sortSeis(gsac, opts)

	Sort seismograms by file indices, quality factors, or a given header

plotphase.py

	Python module for plotting multiple seismograms in one axes.
	Plot only: no data/attributes of SAC files are changed.

	Keyboard and mouse actions:
	Click mouse to select a span to zoom in seismograms.
Press the ‘z’ key to go back to last window span.

	Requried options:
	One of azim_on, bazim_on, dist_on, index_on, zero_on must be chosen. Default is index_on.
Correspong to: paz, pbaz, prs, p1 and p2. Default: p1

These functions can be acheived by scripts created for each mode.

	Optional options:
	pick_on, color_on, stack_on, std_on

	Program structure:
	
	SingleSeisGather
	||

	SingleSeis + baseIndex + baseZero + baseDist + baseAzim + baseBAzim
	

| | | |

V V V V V

sacp1 sacp2 sacprs sacpaz sacpbaz

	copyright:

	Xiaoting Lou

	license:

	GNU General Public License, Version 3 (GPLv3)
http://www.gnu.org/licenses/gpl.html

	
class pysmo.aimbat.plotphase.SingleSeis(sacdh, opts, axss, ybase, color='b', linew=1, alpha=1)

	Bases: object

Plot a single seismogram with given attributes.

	
connect()

	

	
disconnect()

	

	
makeTime()

	Create array x as time series and get reference time.

	
onpick(event)

	

	
plotPicks()

	Plot time picks. Not called by default.
Only works for baseIndex mode because axvline is not used to plot time picks.

	
plotWave()

	Plot wiggled or filled waveform, which is normalized (if not stacking) and shifted to ybase.
Fill both plus and negative side of signal but with different transparency.

If opts.fill == 0: no fill.
If opts.fill > 0: alpha of negative side is a quarter of plus side.
If opts.fill < 0: alpha of plus side is a quarter of negative side.

	
class pysmo.aimbat.plotphase.SingleSeisGather(saclist, opts, axss)

	Bases: object

Plot a group of seismograms.

	
baseAzim()

	Set baseline of seismograms as azimuth.

	
baseBAzim()

	Set baseline of seismograms as back azimuth.

	
baseDist()

	Set baseline of seismograms as epicentral distance in degree.

	
baseDistkm()

	Set baseline of seismograms as epicentral distance in km.

	
baseIndex()

	Set baseline of seismograms as file indices.

	
baseZero()

	Set baseline of seismograms as zeros (stack all).
Do not normalize seismogram by setting opts.ynorm<0.

	
connect()

	

	
disconnect()

	

	
getAzim()

	Get azimuth as ybases for waveforms.

	
getBAzim()

	Get back azimuth as ybases for waveforms.

	
getDist(degree=True)

	Get epicentral distances in degree/km as ybases for waveforms.

	
getIndex()

	Get file indices as ybases for waveforms.

	
getPlot()

	Get plotting attributes

	
getXLimit()

	Get x limit (relative to reference time)

	
getYLimit()

	Get y limit

	
getZero()

	Get zeros as ybases for waveforms.

	
labelStation()

	Label stations at y axis on the right.
The xcoords of the transform are axes, and the yscoords are data.

	
on_zoom(event)

	Zoom back to previous xlim when event is in event.inaxes.

	
plotPicks()

	

	
plotSeis()

	Plot wiggles or filled waveforms.

	
plotSpan()

	Create a SpanSelector on axss.

	
plotStack()

	Calculate mean stack from all traces and plot it.
No taper window is added in.

	
pysmo.aimbat.plotphase.dopts(opts)

	Default options

	
pysmo.aimbat.plotphase.getAxes(opts)

	Get axes for plotting

	
pysmo.aimbat.plotphase.getDataOpts()

	Get SAC Data and Options

	
pysmo.aimbat.plotphase.getOptions()

	Parse arguments and options.

	
pysmo.aimbat.plotphase.main()

	

	
pysmo.aimbat.plotphase.sacp1(saclist, opts, axss)

	SAC P1 style of plotting.

	
pysmo.aimbat.plotphase.sacp1_standalone()

	

	
pysmo.aimbat.plotphase.sacp2(saclist, opts, axss)

	SAC P2 style of plotting.

	
pysmo.aimbat.plotphase.sacp2_standalone()

	

	
pysmo.aimbat.plotphase.sacpaz(saclist, opts, axss)

	SAC plotting along azimuth.

	
pysmo.aimbat.plotphase.sacpaz_standalone()

	

	
pysmo.aimbat.plotphase.sacpbaz(saclist, opts, axss)

	SAC plotting along backazimuth.

	
pysmo.aimbat.plotphase.sacpbaz_standalone()

	

	
pysmo.aimbat.plotphase.sacplot_standalone()

	

	
pysmo.aimbat.plotphase.sacprs(saclist, opts, axss)

	SAC PRS style of plotting: record section.

	
pysmo.aimbat.plotphase.sacprs_standalone()

	

	
pysmo.aimbat.plotphase.splitAxesH(fig, rect=[0.1, 0.1, 0.6, 0.6], n=2, hspace=0, axshare=False)

	Split an axes to multiple (n,1,i) horizontal axes.
Share x-axis if axshare is True.

plotstations.py

	
class pysmo.aimbat.plotstations.PlotStations(plotname, gsac)

	Bases: object

	
bounding_rectangle()

	

	
plot_deleted_stations(axes_handle)

	

	
plot_selected_stations(axes_handle)

	

	
plot_selected_stations_color_delay_times(axes_handle, delay_times)

	

	
plot_stations(gsac)

	

	
show_station_name(event)

	

plotutils.py

	Python module for plotting seismograms:
	functions for axes and legend control, SpanSelector, and multiple-page navigation.

	copyright:

	Xiaoting Lou

	license:

	GNU General Public License, Version 3 (GPLv3)
http://www.gnu.org/licenses/gpl.html

	
class pysmo.aimbat.plotutils.TimeSelector(ax, onselect, direction, *, minspan=0, useblit=False, props=None, onmove_callback=None, interactive=False, button=None, handle_props=None, grab_range=10, state_modifier_keys=None, drag_from_anywhere=False, ignore_event_outside=False, snap_values=None)

	Bases: SpanSelector

To disable SpanSelector when pan, zoom or other interactive/navigation modes are active.
Also disable it when event is out of axes, which is needed to avoid error interfering with pick_event.

	
ignore(event)

	Return whether event should be ignored.

This method should be called at the beginning of any event callback.

	
pysmo.aimbat.plotutils.axLimit(minmax, w=0.05)

	Calculate axis limit with white space (default 5%) from given min/max values.

	
pysmo.aimbat.plotutils.dataNorm(d, w=0.05)

	Calculate normalization factor for d, which can be multi-dimensional arrays.
Extra white space is added.

	
pysmo.aimbat.plotutils.getAxes(opts)

	Get axes for pickphase

	
pysmo.aimbat.plotutils.indexBaseTick(na, nb, pagesize, pna)

	Indexing for page navigation with two lists of length na and nb.

Example

list b (nb=5) list a (na=11)
[0, 1, 2, 3, 4] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] <– yindex
[5, 4, 3, 2, 1] [-1,-2,-3,-4,-5,-6,-7,-8,-9,-10,-11] <– ybases
[-5,-4,-3,-2,-1] [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] <– yticks

	–page -1] [—-page 0—-] [—page 1—] [—page 2—
	
[pnb=2] [pna=3]

yindex for na and nb:
{-1: [[], [0, 1, 2]],

0: [[0, 1, 2], [3, 4]],
1: [[3, 4, 5, 6, 7], []],
2: [[8, 9, 10, 11, 12], []]}

yybase:
{-1: [[], [5, 4, 3]],

0: [[-1, -2, -3], [2, 1]],
1: [[-4, -5, -6, -7, -8], []],
2: [[-9, -10, -11, -12, -13], []]}

yticks:
{-1: [[], [-5, -4, -3]],

0: [[1, 2, 3], [-2, -1]],
1: [[4, 5, 6, 7, 8], []],
2: [[9, 10, 11, 12, 13], []]}

	
pysmo.aimbat.plotutils.pickLegend(ax, npick, pickcolors, pickstyles, left=True)

	Plot only legend box for time picks.

	
pysmo.aimbat.plotutils.plotDelay(stalos, stalas, dtimes, opts)

	

prepdata.py

Python module for preparing time and data arrays (original and filtered in memory) for plotting.

	copyright:

	Xiaoting Lou

	license:

	GNU General Public License, Version 3 (GPLv3)
http://www.gnu.org/licenses/gpl.html

	
pysmo.aimbat.prepdata.axLimit(minmax, w=0.05)

	Calculate axis limit with white space (default 5%) from given min/max values.

	
pysmo.aimbat.prepdata.dataNorm(d, w=0.05)

	Calculate normalization factor for d, which can be multi-dimensional arrays.
Extra white space is added.

	
pysmo.aimbat.prepdata.dataNormWindow(d, t, twindow)

	Calculate normalization factor in a time window.

	
pysmo.aimbat.prepdata.findPhase(filename)

	Find phase (P or S) from component info (BH?) in file name

	
pysmo.aimbat.prepdata.getFilterPara(sacdh, pppara)

	Get default filter parameters from ttdefaults.conf.
Override defaults if already set in SAC file

	
pysmo.aimbat.prepdata.paraDataOpts(opts, ifiles)

	Common parameters, data and options

	
pysmo.aimbat.prepdata.prepData(gsac, opts)

	Prepare data for plotting

	
pysmo.aimbat.prepdata.prepStack(opts)

	Prep stack from existing sacfile opts.fstack

	
pysmo.aimbat.prepdata.sacDataNorm(sacdh, opts)

	get data normalization factor one seismogram

	
pysmo.aimbat.prepdata.seisApplyFilter(saclist, filtParas)

	Filter seismograms by butterworth filter

	
pysmo.aimbat.prepdata.seisDataBaseline(gsac)

	Create plotting baselines for each seismogram in selected and deselected sac lists
Example

delist (n=5) selist a(na=11)

[-5, -4, -3, -2, -1] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] <– yindex
[5, 4, 3, 2, 1] [0, -1,-2,-3,-4,-5,-6,-7,-8, -9,-10] <– ybases

	
pysmo.aimbat.prepdata.seisDataNorm(saclist, opts)

	get data normalization factor each seismogram

	
pysmo.aimbat.prepdata.seisSort(gsac, opts)

	Sort seismograms by file indices, quality factors, time difference, or a given header.

	
pysmo.aimbat.prepdata.seisTimeData(saclist)

	Create time and data (original and in memory) arrays

	
pysmo.aimbat.prepdata.seisTimeRefr(saclist, opts)

	get reference time for each seismogram

	
pysmo.aimbat.prepdata.seisTimeWindow(saclist, twhdrs)

	get time window for each seismogram

	
pysmo.aimbat.prepdata.seisUnApplyFilter(saclist)

	Filter seismograms by butterworth filter

	
pysmo.aimbat.prepdata.seisWave(sacdh)

	Calculate waveform X and Y for plot

	
pysmo.aimbat.prepdata.setFilterPara(sacdh, pppara, filterParameters)

	Set filter parameters dict to sacdh.

prepplot.py

qualctrl.py

Python module for interactively measuring body wave travel times and quality control.
Used by ttpick.py

	PickPhaseMenuMore
	||

PickPhaseMenu + Buttons: ICCS-A Sync ICCS-B MCCC SACP2

	copyright:

	Xiaoting Lou

	license:

	GNU General Public License, Version 3 (GPLv3)
http://www.gnu.org/licenses/gpl.html

	
class pysmo.aimbat.qualctrl.PickPhaseMenuMore(gsac, opts, axs)

	Bases: object

Pick phase for multiple seismograms and array stack
Button: Sync

	
addEarthquakeInfo()

	Set Earthquake Info
* Magnitude
* Location (Lat and Long)
* Depth

	
applyFilter(event)

	

	
ccStack()

	Call iccs.ccWeightStack.
Change reference time pick to the input pick before ICCS and to the output pick afterwards.

	
ccff(event)

	Run iccs with time window from final stack. Time picks: hdrfin, hdrfin.

	
ccim(event)

	

	
connect()

	Connect button events.

	
disconnect()

	Disconnect button events.

	
dismiss_sort(event)

	Dismiss the sorting selection popup Window

	
filter_connect()

	

	
filtering(event)

	

	
getBandpassFreq(event)

	

	
getBandtype(event)

	

	
getButterOrder(event)

	

	
getFilterAxes()

	

	
getHighFreq(event)

	

	
getLowFreq(event)

	

	
getPicks()

	Get time picks of stack

	
getReversePassOption(event)

	

	
getSortAxes()

	

	
getWindow(hdr)

	Get time window twcorr (relative to hdr) from array stack, which is from last run.

	
initPlot()

	Plot waveforms

	
mccc(event)

	Run mccc.py

	
modifyFilterTextLabels()

	

	
on_zoom(event)

	Zoom back to previous xlim when event is in event.inaxes.

	
plot2(event)

	Plot P2 stack of seismograms for defined time picks (ichdrs + wpick).

	
plotSpan()

	Span for array stack

	
plotStack()

	Plot array stack and span

	
plot_stations(event)

	

	
replot()

	Replot seismograms and array stack after running iccs.

	
replot_seismograms()

	Replot seismograms and array stack after running iccs.

	
setLabels()

	Set plot attributes

	
sort_connect()

	write the position for the buttons into self

	
sort_disconnect()

	

	
sort_file(event)

	

	
sort_haz(event)

	

	
sort_hb(event)

	

	
sort_hbaz(event)

	

	
sort_hdelta(event)

	

	
sort_hdist(event)

	

	
sort_he(event)

	

	
sort_hgcarc(event)

	

	
sort_hkstnm(event)

	

	
sort_hnpts(event)

	

	
sort_hstla(event)

	

	
sort_hstlo(event)

	

	
sort_qall(event)

	

	
sort_qccc(event)

	

	
sort_qcoh(event)

	

	
sort_qsnr(event)

	

	
sorting(event)

	Sort the seismograms in particular order

	
spreadButter()

	

	
summarize_sort()

	

	
sync(event)

	Sync final time pick and time window from array stack to each trace and update current page.

	
syncPick()

	Sync final time pick hdrfin from array stack to all traces.

	
syncWind()

	Sync time window relative to hdrfin from array stack to all traces.
Times saved to twhdrs are alway absolute.

	
unapplyFilter(event)

	

	
pysmo.aimbat.qualctrl.getAxes(opts)

	Get axes for plotting

	
pysmo.aimbat.qualctrl.getDataOpts()

	Get SAC Data and Options

	
pysmo.aimbat.qualctrl.getOptions()

	Parse arguments and options.

	
pysmo.aimbat.qualctrl.main()

	

	
pysmo.aimbat.qualctrl.sortSeis(gsac, opts)

	Sort seismograms by file indices, quality factors, time difference, or a given header.

qualsort.py

Python module for selecting and sorting seismograms by quality factors and other header variables.

	copyright:

	Xiaoting Lou

	license:

	GNU General Public License, Version 3 (GPLv3)
http://www.gnu.org/licenses/gpl.html

	
pysmo.aimbat.qualsort.getOptions()

	Parse arguments and options.

	
pysmo.aimbat.qualsort.hdrtype(sacdh, hdr)

	Indentify type of a header

	
pysmo.aimbat.qualsort.initQual(saclist, hdrsel, qheaders)

	Set initial values for selection status and quality factors.

	
pysmo.aimbat.qualsort.seleSeis(saclist)

	Select seismograms.
Return sacdh lists of selected and deleted seismograms.

selelist: selected seismograms
delelist: deleted seismograms, user doe snot want them

	
pysmo.aimbat.qualsort.sortQual(saclist, qheaders, qweights, increase=True)

	Sort quality factors by weighted averaging.
Return sorted sacdh list and means of quality factors.

	
pysmo.aimbat.qualsort.sortSeisHeader(saclist, hdr, increase=True)

	Sort saclist by a header value.

	
pysmo.aimbat.qualsort.sortSeisHeaderDiff(saclist, hdr0, hdr1, increase=True)

	Sort saclist by header value difference (hdr1-hdr0) in increase/decrease order.
Limited to t_n, user_n and kuser_n headers.

	
pysmo.aimbat.qualsort.sortSeisQual(saclist, qheaders, qweights, qfactors, increase=True)

	Select and sort seismograms by quality factors.

sacpickle.py

Module sacpickle.py

	
class pysmo.aimbat.sacpickle.SacDataHdrs(ifile, delta=-1)

	Bases: object

Class for individual SAC file’s data and headers.

	
gethdr(hdr)

	Read a header variable (t_n, user_n, or kuser_n).

	
resampleData(delta)

	

	
savesac()

	Save all data and header variables to an existing or new sacfile.

	
sethdr(hdr, val)

	Write a header variable (t_n, user_n, or kuser_n).

	
sethdrs(sacobj)

	Write SAC headers (t_n, user_n, and kuser_n) in python obj to SAC obj.

	
writeHdrs()

	Write SAC headers (t_n, user_n, and kuser_n) in python obj to existing SAC file.

	
class pysmo.aimbat.sacpickle.SacGroup(ifiles, delta=-1)

	Bases: object

Read a group of SAC files’ headers and data to python objects in memory.
Get event information.

	
resampleData(delta)

	resample data of all sacdh

	
pysmo.aimbat.sacpickle.date2jul(year, mon, day)

	date –> julian day

	
pysmo.aimbat.sacpickle.fileZipMode(ifilename)

	Determine if an input file is SAC, pickle or compressed pickle file

	
pysmo.aimbat.sacpickle.getOptions()

	Parse arguments and options.

	
pysmo.aimbat.sacpickle.jul2date(year, jday)

	julian day –> date

	
pysmo.aimbat.sacpickle.loadData(ifiles, opts, para)

	Load data either from SAC files or (gz/bz2 compressed) pickle file.
Get sampling rate from command line option or default config file.
Resample data if a positive sample rate is given.
Output file type is the same as input file (filemode and zipmode do not change).
If filemode == ‘sac’: zipmode = None
If filemode == ‘pkl’: zipmode = None/bz2/gz

	
pysmo.aimbat.sacpickle.main()

	

	
pysmo.aimbat.sacpickle.obj2sac(gsac)

	Save headers in python objects to SAC files.

	
pysmo.aimbat.sacpickle.pkl2sac(pkfile, zipmode)

	Save headers in python pickle to SAC files.

	
pysmo.aimbat.sacpickle.readPickle(picklefile, zipmode=None)

	Read compressed pickle file to python objects.

	
pysmo.aimbat.sacpickle.resampleSeis(data, deltaold, delta)

	Resample data of a seismogram if given a different positive delta

	
pysmo.aimbat.sacpickle.sac2obj(ifiles, delta=-1)

	Convert SAC files to python objects.

	
pysmo.aimbat.sacpickle.sac2pkl(ifiles, pkfile='sac.pkl', delta=-1, zipmode='gz')

	Convert SAC files to python pickle files.

	
pysmo.aimbat.sacpickle.saveData(gsac, opts)

	Save pickle or sac files.

	
pysmo.aimbat.sacpickle.taper(data, taperwidth=0.1, tapertype='hanning')

	Apply a symmetric taper to each end of data.
http://www.iris.edu/software/sac/commands/taper.html
Default width: 0.1/2=0.05 on each end.

	
pysmo.aimbat.sacpickle.taperWindow(timewindow, taperwidth=0.1)

	Calculate length of taper window from time window so that:
taperwidth = (taperwindow)/(taperwindow+timewindow)

	
pysmo.aimbat.sacpickle.windowData(saclist, nstart, ntotal, taperwidth, tapertype='hanning', datatype='data')

	Cut data within a time window using given indices.
Pad dat with zero if not enough sample.
Use sacdh.data or sacdh.datamem based on data type

	
pysmo.aimbat.sacpickle.windowIndex(saclist, reftimes, timewindow=(-5.0, 5.0), taperwindow=1.0)

	Calculate indices for cutting data at a time window and taper window.
Indices nstart and notal bound the entire window, which is sum of time window and taper window.
Only the taper window part of data is tapered: __———–__
The original MCCC code defines taper window differently: ____——-____
:param saclist:
:type saclist: list of sacdh
:param reftimes:
:type reftimes: list of reference times for the time window
:param timewindow:
:type timewindow: relative time window to cut data
:param taperwindow:
:type taperwindow: length of taper window
:param nstart:
:type nstart: index of first sample point of datacut in each sacdh.data
:param ntotal:
:type ntotal: length of data within the time window

	
pysmo.aimbat.sacpickle.windowTime(saclist, nstart, ntotal, taperwidth, tapertype='hanning')

	Cut time within a time window using given indices.

	
pysmo.aimbat.sacpickle.windowTimeData(saclist, nstart, ntotal, taperwidth, tapertype='hanning')

	Cut part of the time and data based on given indices.

	
pysmo.aimbat.sacpickle.writePickle(d, picklefile, zipmode=None)

	Write python objects to pickle file and compress with highest
protocal (binary) if zipmode is not None.

	
pysmo.aimbat.sacpickle.zipFile(zipmode='gz')

	Return file compress method: bz2 or gz.

stationmapping.py

Python module for mapping station with the help of GMT scripts.

	copyright:

	Arnav Sankaran

	license:

	GNU General Public License, Version 3 (GPLv3)
http://www.gnu.org/licenses/gpl.html

	
class pysmo.aimbat.stationmapping.StationMapper(sacgroup)

	Bases: object

	
extractData()

	

	
plotData(selectedPath, deselectedPath)

	

	
start()

	

	
writeToFile()

	

ttconfig.py

Module: ttconfig.py

	
class pysmo.aimbat.ttconfig.CCConfig

	Bases: object

Class for ICCS configuration.

	
class pysmo.aimbat.ttconfig.MCConfig

	Bases: object

Class for MCCC configuration.

	
class pysmo.aimbat.ttconfig.PPConfig

	Bases: object

Class for SAC PlotPhase and PickPhase configurations.

	
class pysmo.aimbat.ttconfig.QCConfig

	Bases: object

Class for QCTRL configuration.

	
pysmo.aimbat.ttconfig.getDefaults()

	Get default parameters from a configuration file: ttdefaults.conf.
The file is searched in this order:

	the current working directory

	home directory

	environment variable TTCONFIG

	the same directory as this program.

	
pysmo.aimbat.ttconfig.getParser()

	Parse command line arguments and options.

ttguiqt.py

xcorr.py

	Python module to calculate cross-correlation function of two time series with the same length.
	
	c(k) = sum_i x(i) * y(i+k)
	where k is the time shift of y relative to x.

Delay time, correlation coefficient, and polarity at maximum correlation are returned.

Added suport to correlation polarity to allow negative correlation maximum.
Output ccpol=1 if positive or ccpol=-1 if negative. xlou 03/2011

	copyright:

	Xiaoting Lou

	license:

	GNU General Public License, Version 3 (GPLv3)
http://www.gnu.org/licenses/gpl.html

	
pysmo.aimbat.xcorr.xcorr_fast(x, y, shift=10)

	Fast cross-correlation of two time series of the same length.
One level of coarse shift by downsampling the signal.

	
pysmo.aimbat.xcorr.xcorr_fast_polarity(x, y, shift=10)

	Fast cross-correlation of two time series of the same length.
One level of coarse shift by downsampling the signal.
Do not correct polarity

	
pysmo.aimbat.xcorr.xcorr_faster(x, y, shift=10)

	Faster cross-correlation only for time lags around zero.

	
pysmo.aimbat.xcorr.xcorr_faster_polarity(x, y, shift=10)

	Faster cross-correlation only for time lags around zero.
Do not correct polarity

	
pysmo.aimbat.xcorr.xcorr_full(x, y, shift=1)

	Cross-correlation of two 1-D arrays using ‘full’ mode.
Argument shift=1 is here only in order to make the same number of arguments for all xcorr functions.

	
pysmo.aimbat.xcorr.xcorr_full_polarity(x, y, shift=1)

	Cross-correlation of two 1-D arrays using ‘full’ mode.
Argument shift=1 is here only in order to make the same number of arguments for all xcorr functions.
Not correct the polarity

	
pysmo.aimbat.xcorr.xcorr_same(x, y)

	Cross-correlation of two 1-D arrays using ‘same’ mode.

	
pysmo.aimbat.xcorr.xcorr_select(x, y, lags)

	Cross-correlation of two time series of the same length
for selected lag(shift) times

	
pysmo.aimbat.xcorr.xcorr_select_polarity(x, y, lags)

	Cross-correlation of two time series of the same length
for selected lag(shift) times
Do not correct polarity

Getting Data

Note: Not necessary if you already have your own set ways of obtaining data. This section is added for completeness.

There are several ways to obtain seismic data from IRIS [http://www.iris.edu/dms/nodes/dmc/data/types/waveform-data/] to input into AIMBAT. The authors used two ways to do it, and a further list of libraries for obtaining seismic data is provided in the sidebars here [http://www.iris.edu/dms/nodes/dmc/data/types/waveform-data/].

Obspy.fdsn for downloading data

Installing Obspy

We recommend using Macports to install Obspy as detailed in the Installation section here [https://github.com/obspy/obspy/wiki]. If you have installed Enthought Canopy:

sudo port install py27-obspy

should install Obspy. If not, installing it with Homebrew [https://github.com/obspy/obspy/wiki/Installation-on-OS-X-using-Homebrew] also seems to work.

Did the installation work?

If the installation has worked, close the terminal you used to install Obspy on, and then open it again. Now, open the Python terminal in a new terminal by typing python, and type:

import obspy

If there are no errors, your installation has worked.

Using Obspy

Use the Obspy FDSN [http://docs.obspy.org/packages/obspy.fdsn.html#] web service client for Obspy in Python. Once you have done so, check out the SAC-Input Output [http://docs.obspy.org/packages/obspy.sac.html] libraries for loading the data to Python and saving it as SAC or Pickle files.

Standing Order for Data

Note: NOT needed for AIMBAT, but important to know about as it is a commonly used package for downloading seismic data with the user’s specifications. Although Obspy also offers ways to download seismic data from IRIS, SOD allows for better fine-tuning of obtained data.

From the SOD [http://www.seis.sc.edu/index.html] website:

Standing Order for Data is a framework to define rules to select seismic events, stations, and data. It then allows you to apply processing to the events, stations, and data and currently contains a large set of rules that allow you to select with great precision in these items. The processes mainly consist of simple data transformation and retrieval, but SOD defines hooks to allow you to cleanly insert your own processing steps, either written in Java or an external program.

Installing SOD

First, download SOD [http://www.seis.sc.edu/index.html].

Once you have gotten the folder for SOD, put it somewhere where you won’t touch it too much. What I did was put the SOD folder in my home directory, though other places are acceptable as well, as long as it is not too easy to delete it by accident.

[image: archive/images/sod_location.png]
Once you have it there, get the path to the sod folder’s bin and put it in your path folder.

[image: archive/images/path_to_sod_bin.png]
Inside your home directory (you get there by typing cd), put the path to sod-3.2.3/bin by adding it to either the .bashrc, .bash_profile, or .profile files.

Example SOD recipe

Inside the repository data-example [https://github.com/pysmo/data-example], there is a folder sod_requests. The file within it called sod_request.xml, which is available here [https://github.com/pysmo/data-example/blob/master/sod_requests/sod_request.xml], is an example of a sod request recipe that will download data from IRIS. To run it, cd into the folder containing sod_request.xml and do:

sod sod_request.xml

Downloading the data (output as SAC files) may take a while. This receipt filters the data, and outputs the folders processedSeismograms and seismograms, which contain the filtered and unfiltered data.

Wilber

Another resource for downloading SAC data is Wilber, created by IRIS (Incorporated Research Institutions for Seismology) and located at their website here [https://ds.iris.edu/wilber3/pick_event] (manual located here [https://ds.iris.edu/ds/nodes/dmc/manuals/wilber-3]). When selecting which events or stations to study, keep in mind that distances between 30 and 90 degrees will result in the best data when studying P waves.

For P waves, select the BHZ (vertical) channel, and for S waves select the other two BH- channels for a given station (usually BH1/BH2 or BHE/BHN). Make sure to choose appropriate time windows for the type of wave you are studying when prompted.

After downloading SAC data from Wilber, the theoretical arrival times for each SAC file must be added. One way to do this is using taup_setsac, which is part of the TauP software package available here [http://http://www.seis.sc.edu/taup].

Updating this manual

This is for someone who wants to be a collaborator on AIMBAT only. This is NOT necessary for anyone who only wants to use AIMBAT. AIMBAT will work fine if you do not install the dependencies listed here.

To be able to update the manual, download the source code [https://github.com/pysmo/aimbat-docs] from Github, and install the dependencies.

Dependencies

	Sphinx [http://sphinx-doc.org/]. Download and install from here [https://pypi.python.org/pypi/Sphinx]. Don’t get the Python Wheel version unless you know what you are doing

	LaTeX. Download it from here [http://www.tug.org/mactex/]. Get the package installer.

	A browser. But if you are reading this, you already have it.

How to update this manual

On the master branch, cd into the github repository aimbat-docs <https://github.com/pysmo/aimbat-docs> and run:

sphinx-build -b html . builddir
make html
make latexpdf

The first two commands build the html for the webpage, while the last command makes a pdf version of the online documentation.

Now, commit the changes made in GitHub, and push the changes to the master branch. The changes should be visible in the documentation within a few minutes.

Measuring Teleseismic Body Wave Arrival Times

The core idea in using AIMBAT to measure teleseismic body wave arrival times has two parts:

	automated phase alignment, to reduce user processing time, and

	interactive quality control, to retain valuable user inputs.

Automated Phase Alignment

The ICCS algorithm calculates an array stack from predicted time picks, cross-correlates each seismogram with the array stack to find the time lags at maximum cross-correlation, then uses the new time picks to update the array stack in an iterative process. The MCCC algorithm cross-correlates each possible pair of seismograms and uses a least-squares method to calculate an optimized set of relative arrival times. Our method combines ICCS and MCCC in a four-step procedure using four anchoring time picks \(_0T_i,\,_1T_i,\,_2T_i,\) and \(_3T_i\).

	Coarse alignment by ICCS

	Pick phase arrival at the array stack

	Refined alignment by ICCS

	Final alignment by MCCC

The one-time manual phase picking at the array stack in step (b) allows the measurement of absolute arrival times. The detailed methodology and procedure can be found in [LouVanDerLee2013].

Time picks and their SAC headers used in the procedure for measuring teleseismic body wave arrival times.

	Step

	Algorithm

	Input

	Output

	Time Window

	Time Pick

	Time Header

	Time Pick

	Time Header

	
	

	ICCS

	\(W_a\)

	\(_0T_i\)

	T0

	\(_1T_i\)

	T1

	
	

	ICCS

	\(W_b\)

	\(_2T'_i\)

	T2

	\(_2T_i\)

	T2

	
	

	MCCS

	\(W_b\)

	\(_2T_i\)

	T2

	\(_3T_i\)

	T3

The ICCS and MCCC algorithms are implemented in two modules pysmo.aimbat.algiccs and pysmo.aimbat.algmccc, and can be executed in scripts iccs.py and mccc.py respectively.

Picking Travel Times

This section explains how to run the program aimbat-ttpick to get the travel times you want.

Getting into the right directory

In the terminal, cd into the directory with all of the pkl files you want to run. You want to run either the BHT or BHZ files. BHT files are for S-waves and BHZ files are for P-waves. PKL is a bundle of SAC files. Each SAC file is a seismogram, but since there may be many seismograms from various stations for each event, we bundle them into a PKL file so we only have to import one file into AIMBAT, not a few hundred of them.

Running aimbat-ttpick

Run aimbat-ttpick -p P <path-to-pkl-file> for BHZ files or aimbat-ttpick -p S <path-to-pkl-file> for BHT files. A GUI should pop up if you successfully ran it. Note that if you click on the buttons, they will not work until you move your mouse off them; this is a problem we are hoping to fix.

You can get some example data to test this out by downloading the Github repository data-example [https://github.com/pysmo/data-example]. Now, cd into the folder example_pkl_files, which has several pickle files for seismic events. Type:

aimbat-ttpick -p P 20110915.19310408.bhz.pkl

and a python GUI should pop up.

[image: usage/images/pick_travel_times.png]
At the top of the GUI is the scaled sum of all of the seismograms known as the array stack, which gives a characteristic waveform of the event for the stations involved. Beneath this is a page of seismograms, with the corresponding station and various quality factors listed on the right. CCC is the cross-correlation coefficient between that seismogram and the array stack, SNR is the signal-to-noise ratio, and COH is the coherence between that seismogram and the array stack.

Initial deselection of bad seismograms

Bad seismograms are those whose waveforms look nothing like the array stack above. By default, the seismograms are sorted by quality, so bad seismograms will likely be at the top. In order to deselect these, click on the waveforms themselves (not the fill) and wait a second or two for them to turn gray. The user can develop criteria for which seismograms to deselect and which to keep. Simply deselecting all seismograms below a certain quality threshold can decrease time but may lead to good seismograms being deselected or bad seismograms remaining.

Remember to save your work periodically once you start picking your travel times. Otherwise, if AIMBAT crashes, you will lose your work.

Align

The first step after deselecting seismograms is to press Align. This will recalculate both the array stack and the T1 picks for the seismograms, not including the deselected seismograms. Do not press Align after pressing Sync unless you wish to remove any T2 picks that have been made.

Sync, refine, and setting time window

After hitting the Align button, place the cursor on the array stack where the first motion of the seismogram, either up or down, occurs. Press t and 2 simultaneously on the keyboard to select the arrival time. Now press Sync. Use the mouse to drag and select the desired time window on the seismogram on the array stack. This time window is the portion of the seismogram on which cross-correlation will be run. The time window should begin 2-10 seconds before the first arrival and include a few seconds of the first motion of the waveform. The final time window should be smaller than the default window to increase the accuracy of the cross-correlation.

[image: usage/images/selecting-time-window-highlight.png]
Next, set the cursor over the array stack and press the w key. If the new time window has been saved, a message noting the new size of the time window will be printed in the terminal. The entire width of the x-axis is now colored green and will be stored as the time window to use for the cross-correlations. Press Save headers only if you wish to keep this time window for future applications.

Now press Refine and all the seismograms will align with the smaller time window. Note that the Weighted average quality printed to the terminal may decrease significantly, but this is likely due to the fact that the time window is smaller than the original.

Filtering

If you wish to apply a filter to your data, hit the Filter button, and a window will pop up for you to use the Butterworth filter [http://en.wikipedia.org/wiki/Butterworth_filter] to filter your data.

[image: usage/images/filtering-interface.png]
The defaults used for filtering are:

	Variable

	Default

	Order

	2

	Filter Type

	Bandpass

	Low Frequency

	0.05 Hz

	High Frequency

	0.25 Hz

You can change the order and filter type by selecting the option you want. In order to set corner frequencies for the filter, select the low frequency and the high frequency you want on the lower figure by clicking. Press Apply to filter the seismograms when you are satisfied with the filter parameters chosen.

Finalize

Hit Finalize to run the multi-channel cross-correlation. Do not hit Align or Refine again, or all your previous picks will be written over. A warning will pop up to check if you really do want to hit these two buttons if you do click on them.

SACP2 to check for outlier seismograms

Hit SACP2 and go to the last figure, (d). Zoom in to have a better look. Zooming in doesn’t always work well; close and reopen the SACP2 window if there are problems.

Click on the outliers that stray from the main group of stacked seismograms. The terminal will output the names of the seismograms that you clicked on, so you can return to the main GUI window and readjust the travel times. Note: hitting SACP2 before hitting Finalize will often cause AIMBAT to close, so make sure you have finalized before using SACP2.

[image: usage/images/SACP2_popup.png]

Go through the badly aligned seismograms and realign the travel times manually

By default, the worst seismograms are on the first page, and as you click through the pages, the quality of the seismograms gradually gets better. Keep using t2 to realign the arrival times so that the peaks of all the seismograms are nicely aligned. Remember to zoom in to have a better look.

However, you may wish to sort the seismograms in alphabetical order or by azimuth so that you can find the bad seismogrrams and correct them more easily. Hit the Sort button and a window will pop up for you to choose which sorting method to use. In this case, choose File to sort the files by station name alphabetically, or choose AZ to sort the files by azimuth from the event epicenter. The seismograms are stretched to fit together, but they may be scaled differently.

What the Alignments Stand For

	T0: Theoretical Arrival

	T1: Pick from initial cross correlation

	T2: Travel Time pick

	T3: MCCC pick

	T4: Zoom in

Post Processing

Getting the output

In the same folder as the initial PKL file you ran aimbat-ttpick on, you can find the output list with extension <event name>.mcp, which contains the travel time arrivals.

[image: usage/images/output_list.png]
mccc delay is t3+average arrival times, and t0_times are the theoretical arrival times. delay_times are obtained by taking t3-t0.

Disclaimer about delay times

t0 depends on hypocenter location, origin time, and reference model. We compute the delay time by finding t3-t0, but it does not have elliptic, topological, or crust corrections.

Getting the stations of the seismograms chosen

Run getsta.py in the additional scripts (not on Github for now). It gives the unique list of stations where the seismograms came from. You need to run it with the list of all pkl files chosen after you saved to. To do this, type ./getsta.py *.pkl.

[image: usage/images/count_stations.png]

Visualizing Stations on a map

After running:

aimbat-ttpick <sac-files>

Hit Map of Stations in order to get a visual respresentation of where exactly each station is. Dots represent circles used for computing delay times; black triangles represent discarded stations. Click on a dot to get the station name in the terminal.

[image: usage/images/basemap_stations.png]

Picking Travel Times does not work

If you run aimbat-ttick <Event name>.bhz.pkl, a GUI will pop up for you to manually pick the travel times by pressing the keyboard. If typing on the keyboard as directed does not allow you to pick travel times, it could be a problem with the keyboard settings, or the matplotlib backend.

To fix this, first look for the .matplotlib directory. It is hidden in your home directory, so do ls -a to find it.

Once you have found the .matplotlib directory, cd into it, and then look for the matplotlibrc file.
Inside that file, ensure the backend is set to:

backend : TkAgg

Make sure to comment out the other backends.

Alternative Qt GUI for Measuring Arrival Times

The Matplotlib [http://matplotlib.org/contents.html] GUI is slow for interactive plotting.
An additional GUI based on pyqtgraph [http://www.pyqtgraph.org/] was built since v1.0.0 to speed up plotting.
Similar to the old GUI, run:

aimbat-qttpick <path-to-pkl-file>

to launch the Qt GUI. Phase of the seismogram (P or S), if not given in command line, can be automatically found based on file names including BHZ or BHT. Here is aGn example snapshot:

[image: usage/images/qttpick_gui.png]
The AIMBAT philosophy of using the five-step (Align, Pick, Sync, Refine, and Finalize) procedure for automated and interactive phase arrival time measurement is the same.

Some GUI behavior remains the same:

	the phase picking steps of Align, Pick, Sync, Refine, and Finalize.

	mouse clicking waveforms to change trace selection status.

	keyboard interaction: t[0-9] to pick time, and w to set time window.

	Click Button Sac P2 to overlay all traces relative to time picks

Some components are different:

	Choose sort and filter options in a parameter tree and apply in the same GUI window.

	All traces plotted in one long page, instead of multiple pages.

	Still Possible to plot a subset of traces. Click button to add more traces to the plotting window.

	Pyqtgraph mouse events [http://www.pyqtgraph.org/documentation/mouse_interaction.html]: e.g., right mouse button drag to zoom in and out.

	Time window is plotted as a pyqtgraph.LinearRegionItem [http://www.pyqtgraph.org/documentation/graphicsItems/linearregionitem.html] instead of Matplotlib Span Selector. To change time window size, just drag either side line and move. Still press key w to set time window.

	A vertical hair indicating the time axis value is always plotted follow the mouse movement.

In the above example, 37 selected seismograms are plotted initially. During the arrival time measurement procedure, traces sorting order is changed after time window size or sorting parameters are changed. Trace 37, 38, 39 are missing in the GUI. You can optionally click Plot More Traces Button to fill the gap. You can also zoom out vertically and plot more traces.

Here is an example of filtering seismograms. First choose filtering parameters in the parameter tree and test on the stack by clicking Button Confirm_Filt_Parameters and Button Filter on Stack/Traces. Then applied filter to traces after parameters are finalized.

[image: usage/images/qttpick_gui_filter_stack.png]
[image: usage/images/qttpick_gui_filter_trace.png]
Some QC tools are available in this Qt GUI. Click Button Sac P1 and Sac P2 to plot traces relative to four time picks T0, T1, T2, and T3. Click Button Plot Delay Times to plot absolute delay times in a map view.

[image: usage/images/qttpick_gui_p1.png]
[image: usage/images/qttpick_gui_p2.png]
[image: usage/images/20110915.19310408.mcp.png]
More details might be added here in the future.

SAC Data Access

NOTE: All .sac files must include origin time, hypocenter, as well as station coordinates and elevation in their headers.

Python Object for SAC File

The pysmo.core.sac package is developed to read and write individual SAC files.
The Python class SacIO of module pysmo.core.sac.sacio opens a SAC file and returns an object including data and all SAC header variables as their attributes. Modifications of object attributes are saved to file. It is written purely in Python so that it also runs with Jython [http://www.jython.org].

egsac.py

The <pkg-install-dir>/example-scripts/egsac.py script gives a simple example to read, resample, and plot a seismogram using pysmo, Scipy, and Matplotlib. You can type the codes in a Python/iPython shell, or run as a script in the data example directory <pkg-install-dir>/data-example/Event_2011.09.15.19.31.04.080, hereafter referred to as <example-event-dir>.

[image: usage/images/prog-egsac.png]

Resampling Seismograms

In this example, a SAC file named TA.109C.__.BHZ.sac is read in as a sacfile object. The time array is calculated from SAC headers. The data array is resampled from interval 0.025 to 2.0 seconds using Scipy’s signalprocessing module.

Add the following codes to write the resampled seismogram to file TA.109C.__.BHZ.sac:

sacobj.delta = deltanew
sacobj.npts = nptsnew
sacobj.data = y2

[image: usage/images/egsac-109c.png]

Python Pickle for SAC Files

The pysmo.core.sac.sacio module converts SAC files to SacIO objects. Any modification of the objects are instantly written to files. In data processing, the user may want to abandon changes made earlier, which brings the need of a buffer for the SacIO objects.

The SacDataHdrs class in the pysmo.aimbat.sacpickle module is written on top of pysmo.SacIO to serves this purpose by reading a SAC file and returning a sacdh object that is very similar to the sacfile object. Essentially, the sacdh object is a copy of the sacfile object in the memory, except that SAC headers ‘t0-t9’, ‘user0-user9’, and ‘kuser0-kuser2’ are saved in three Python lists.

A gsac object of the SacGroup class consists of a group of sacdh objects from event-based SAC data files, earthquake hypocenter information, and station locations.
An additional step is required to save changes in the gsac object to files.

In order to avoid frequent SAC file I/O, the pickle/cPickle module is used for serializing and de-serializing the gsac object structure. Thus the data processing efficiency is improved because reading and writing of SAC files are done only once each before and after data processing. Script aimbat-sac2pkl does the conversions between SAC files and Python pickles.

Its usage message can be printed out by running at command line:

aimbat-sac2pkl -h

and the result is displayed in the figure below. For example, in the data example directory <example-event-dir>, run:

aimbat-sac2pkl -s *Z -o 20110915.19310408.bhz.pkl -d 0.025

to read 163 vertical component seismograms at a sample interval of 0.025 s and convert to a gsac object, which is saved in the pickle file 20110915.19310408.bhz.pkl.

To save disk space, compressed pickle files in gz and bz2 formats can be generated by:

aimbat-sac2pkl -s *Z -o 20110915.19310408.bhz.pkl -d 0.025 -z gz
aimbat-sac2pkl -s *Z -o 20110915.19310408.bhz.pkl -d 0.025 -z bz2

at the cost of more CPU time.

After processing, run:

aimbat-sac2pkl 20110915.19310408.bhz.pkl -p

to convert the pickle file to SAC files.

[image: usage/images/help-sac2pkl.png]
See the doc string of pysmo.aimbat.sacpickle by typing in a python console:

from pysmo.aimbat import sacpickle
print(sacpickle.__doc__)

and also the documentation on pickle [http://docs.python.org/library/pickle.html] for more information about the Python data structure, pickling, and unpickling.

SAC Plotting and Phase Picking

[image: usage/images/help-sacplot.png]
SAC plotting and phase picking functionalities are replicated and enhanced based on the GUI neutral widgets (such as Button and SpanSelector) and the event (keyboard and mouse events such as key_press_event and mouse_motion_event handling API of Matplotlib.

They are implemented in two modules, pysmo.aimbat.plotphase and pysmo.aimbat.pickphase, which are used by corresponding scripts aimbat-sacplot and aimbat-sacppk executable at command line. Their help messages are displayed in the figures below.

[image: usage/images/help-sacppk.png]
[image: usage/images/prog-egplot.png]

SAC Plotting

Options “-i, -z, -d, -a, and -b” of aimbat-sacplot set the seismogram plotting baseline as file index, zero, epicentral distance in degrees, azimuth, and back-azimuth, respectively.
The user can run aimbat-sacplot directly with the options, or run individual scripts
aimbat-sacp1, aimbat-sacp2, aimbat-sacprs, aimbat-sacpaz, and aimbat-sacpbaz, which preset the baseline options and plot seismograms in SAC p1 style, p2 style, record section, and relative to azimuth and back-azimuth. The following commands are equivalent:

aimbat-sacplot -i, aimbat-sacp1
aimbat-sacplot -z, aimbat-sacp2
aimbat-sacplot -d, aimbat-sacprs
aimbat-sacplot -a, aimbat-sacpaz
aimbat-sacplot -b, aimbat-sacpbaz

Input data files need to be supplied to the scripts in the form of either a list of SAC files or a pickle file that includes multiple SAC files. For example, a bhz.pkl file is generated from 22 vertical component seismograms TA.[1-K]*Z by running:

aimbat-sac2pkl TA.[1-K]*BHZ -o bhz.pkl -d0.025

in the data example directory <example-event-dir>. Then the two commands are equivalent:

aimbat-sacp1 TA.[1-K]*Z

or:

aimbat-sacp1 bhz.pkl

For large numbers of seismograms, the pickle file is suggested because of faster loading.

Besides using the standard aimbat-sacplot script, the user can modify its getAxes function in their own script to customize figure size and axes attributes. Script egplot.py is such an example in which SAC p1, p2 styles and record section plotting are drawn in three axes in the same figure canvas. Run:

egplot.py TA.[1-K]*Z -f1 -C

at command line to produce the figure below.

[image: usage/images/egplot.png]
The “-C” option uses random color for each seismogram.
The “-f1” option fills the positive signals of waveform with less transparency.
In the script, “opts.ynorm” sets the waveform normalization and “opts.reltime=0” sets the time axis relative to time pick t0.

An improvement over SAC is that the program outputs the filename when the seismogram is clicked on by the mouse. This is enabled by the event handling API and is mostly introduced for use in SAC p2 style plotting when seismograms are plotted on top of each other. It is especially useful when a large number of seismograms create difficulties in labeling.

Another improvement is easier window zooming enabled by the SpanSelector widget and the event handling API. Select a time span by mouse clicking and dragging to zoom in a waveform section.
Press the ‘z’ key to zoom out to the previous time range.

SAC Phase Picking

SAC plotting (pysmo.aimbat.plotphase) does not involve change in data files, but phase picking (pysmo.aimbat.pickphase) does. A GUI is built for the user to interactively pick phase arrival times. The figure below is an example screen shot running:

aimbat-sacppk 20110915.19310408.bhz.pkl -w

in the data example directory <example-event-dir>.

Following SAC convention, the user can set a time pick by pressing the ‘t’ key and number keys ‘0-9’. The x location of the mouse position is saved to corresponding SAC headers ‘t0-t9’.
Time window zooming in pysmo.aimbat.pickphase is implemented in the same way as in pysmo.aimbat.plotphase to replace SAC’s combination of the ‘x’ key and mouse click.
Zooming out key is set to ‘z’ because the ‘o’ key is used for another purpose by Matplotlib.
The filename printing out by mouse clicking feature is also available in pysmo.aimbat.pickphase.

A major improvement over SAC is picking a time window in addition to time picks.
Pressing the ‘w’ key to save the current time axis range to two user-defined SAC header variables. A transparent green span is plotted within the time window, as shown in the figure below.

[image: usage/images/sacppk.png]
Another major improvement involves quality control with convenient operations to (de)select seismograms. In the GUI above, there are two divisions of selected and deleted seismograms.
Selected seismograms with a positive trace number are displayed with blue wiggles, while deleted seismograms with negative trace numbers are plotted in gray. The user can simply click on a certain seismogram to switch the selection status, either to exclude it or bring it back for inclusion. The trace selection status is stored in a user-defined SAC header variable.

In SAC, command ppk p 10 plots 10 seismograms on each page. Pressing the ‘b’ and ‘n’ keys to navigate through pages. The number of seismograms plotted on each page is controlled by command line option:

-m maxsel maxdel

for aimbat-sacppk. The Prev and Next buttons are for page navigation and the Save Button saves the change in time picks and time window to files. The default values for maxsel and maxdel are 25 and 5, which means a maximum of 30 seismograms on each page.

In the figure displayed, there are 26 seismograms on the first page because only 1 seismogram is deleted. On the next page, there are 30 selected seismograms. To plot 50 seismograms on each page, run:

aimbat-sacppk 20110915.19310408.bhz.pkl -w -m 45 5

and there would be 4 total pages and 13 seismograms on the last page.

To plot seismograms relative to time pick t0 and fill the positive and negative wiggles of waveform, run:

aimbat-sacppk 20110915.19310408.bhz.pkl -w -r0 -f1

To sort seismograms by epicentral distance in increase and decrease orders, run:

aimbat-sacppk 20110915.19310408.bhz.pkl -w -sdist
aimbat-sacppk 20110915.19310408.bhz.pkl -w -sdist-

Sorting by azimuth and back-azimuth is similar:

aimbat-sacppk 20110915.19310408.bhz.pkl -w -saz
aimbat-sacppk 20110915.19310408.bhz.pkl -w -sbaz

The help message of the aimbat-iccs script is shown below:

[image: usage/images/help-iccs.png]
The help message of the aimbat-mccs script is shown below:

[image: usage/images/help-mccc.png]

Parameter Configuration

Backend

Matplotlib [http://matplotlib.org/contents.html] works with six GUI (Graphical User Interface) toolkits:

	WX

	Tk

	Qt(4)

	FTK

	Fltk

	macosx

The GUI of AIMBAT uses the following to support interactive plotting:

	GUI neutral widgets [http://matplotlib.org/api/widgets_api.html]

	GUI neutral event handling API (Application Programming Interface) [http://matplotlib.org/users/event_handling.html]

Visit these pages for an explanation of the backend [http://matplotlib.org/faq/usage_faq.html#what-is-a-backend] and how to customize it [http://matplotlib.org/users/customizing.html#customizing-matplotlib].

AIMBAT uses the default toolkit Tk and backend TkAgg.

In the latest version, user does not need to setup the backend for the SAC plotting functions.

Configuration File

Parameters for the package can be set up by a configuration file ttdefaults.conf, which is interpreted by the module ConfigParser. This configuration file is searched in the following order:

	file ttdefaults.conf in the current working directory

	file .aimbat/ttdefaults.conf in your HOME directory

	a file specified by environment variable TTCONFIG

	file ttdefaults.conf in the directory where AIMBAT is installed

Python scripts in the <pkg-install-dir>/pysmo-aimbat-0.1.2/scripts can be executed from the command line. The command line arguments are parsed by the optparse module to improve the scripts’ exitability. If conflicts existed, the command line options override the default parameters given in the configuration file ttdefaults.conf. Run the scripts with the -h option for the usage messages.

Example of AIMBAT configuration file ttdefaults.conf

	ttdefaults.conf

	Description

	[sacplot]

	

	colorwave = blue

	Color of waveform

	colorwavedel = gray

	Color of waveform which is deselected

	colortwfill = green

	Color of time window fill

	colortwsele = red

	Color of time window selection

	alphatwfill = 0.2

	Transparency of time window fill

	alphatwsele = 0.6

	Transparency of time window selection

	npick = 6

	Number of time picks (plot picks: t0-t5)

	pickcolors = kmrcgyb

	Colors of time picks

	pickstyles

	Line styles of time picks (use second one if ran out of color)

	figsize = 8 10

	Figure size for plotphase.py

	rectseis = 0.1 0.06 0.76 0.9

	Axes rectangle size within the figure

	minspan = 5

	Minimum sample points for SpanSelector to select time window

	srate = -1

	Sample rate for loading SAC data.
Read from first file if srate < 0

	[sachdrs]

	twhdrs = user8 user9

	SAC headers for time window beginning and ending

	ichdrs = t0 t1 t2

	SAC headers for ICCS time picks

	mchdrs = t2 t3

	SAC headers for MCCC input and output time picks

	hdrsel = kuser0

	SAC header for seismogram selection status

	qfactors = ccc snr coh

	Quality factors: cross-correlation coefficient,
signal-to-noise ratio, time domain coherence

	qheaders = user0 user1 user2

	SAC Headers for quality factors

	qweights = 0.3333 0.3333 0.3333

	Weights for quality factors

	[iccs] or Align/Refine

	

	srate = -1

	Sample rate for loading SAC data. Read from first file if srate < 0

	xcorr_modu = xcorrf90

	Module for calculating cross-correlation:
xcorr for Numpy or xcorrf90 for Fortran

	xcorr_func = xcorr_fast

	Function for calculating cross-correlation:
xcorr_full/fast/faster, reverse polarity allowed
xcorr_full/fast/faster_polarity, reverse polarity not allowed

	shift = 10

	Sample shift for running coarse cross-correlation

	maxiter = 10

	Maximum number of iteration

	convepsi = 0.001

	Convergence criterion: epsilon

	convtype = coef

	Type of convergence criterion: coef for correlation coefficient,
or resi for residual

	stackwgt = coef

	Weight each trace when calculating array stack

	fstack = fstack.sac

	SAC file name for the array stack

	[mccc]

	

	srate = -1

	Sample rate for loading SAC data.
Read from first file if srate \(< 0\)

	ofilename = mc

	Output file name of MCCC.

	xcorr_modu = xcorrf90

	Module for calculating cross-correlation:
xcorr for Numpy or xcorrf90 for Fortran

	xcorr_func = xcorr_fast

	Function for calculating cross-correlation:
xcorr_full/fast/faster, reverse polarity allowed
xcorr_full/fast/faster_polarity, reverse polarity not allowed

	shift = 10

	Sample shift for running coarse cross-correlation

	extraweight = 1000

	Weight for the zero-mean equation in MCCC weighted lsqr solution

	lsqr = nowe

	Type of lsqr solution: no weight

	#lsqr = lnco

	Type of lsqr solution: weighted by correlation coefficient,
solved by lapack

	#lsqr = lnre

	Type of lsqr solution: weighted by residual, solved by lapack

	rcfile = .mcccrc

	Configuration file for MCCC parameters (deprecated)

	evlist = event.list

	File for event hypocenter and origin time (deprecated)

	signal

	

	tapertype = hanning

	Taper type

	taperwidth = 0.1

	Taper width

	fhdrBand = kuser1

	SAC Header to store filter type

	fhdrApply = kuser1

	SAC Header to store applying filter or not

	fhdrRevPass = user4

	SAC Header to store reverse pass of filter

	fhdrLowFreq = user5

	SAC Header to store low frequency of band pass filter

	fhdrHighFreq = user6

	SAC Header to store high frequency of band pass filter

	fhdrOrder = user7

	SAC Header to store order of band pass filter

	fvalApply = 0

	Value of applying filter or not

	fvalBand = bandpass

	Value of filter type

	fvalRevPass = 0

	Value of reverse pass filter

	fvalLowFreq = 0.05

	Value of low frequency of band pass filter

	fvalHighFreq = 2

	Value of high frequency of band pass

	fvalOrder = 2

	Value oforder of band pass filter

Seismic Analysis Code (SAC)

AIMBAT uses Seismic Analysis Code (SAC) [http://www.iris.edu/files/sac-manual/] formatting for some of the files it runs and outputs. To get SAC, you will need to fill out a software request form available on the IRIS website.

SAC Input/Output procedures for AIMBAT

Aimbat converts SAC files to python pickle data structure to increase
data processing efficiency by avoiding frequent SAC file I/O.

Reading and writing SAC files is done only once each before and after data processing, and
intermediate processing is performed on python objects and pickles.

Converting from SAC to PKL files

Place the SAC files you want to convert to a pickle (PKL) file into the same folder.
Suppose, for instance, they are BHZ channels. Note that the SAC files must be of the
same channel. cd into that folder, and run:

aimbat-sac2pkl -s *.BHZ.sac

The output should be a PKL file in the same folder as the sac files.

[image: usage/images/sac_to_pkl_conversion.png]

Converting from PKL to SAC files

cd into the folder containing the PKL file that you wish to convert into SAC files, and run:

aimbat-sac2pkl --p2s <name-of-file>.pkl

The SAC files contained within will output into the same folder as the PKL file is stored in.

[image: usage/images/pkl_to_sac_conversion.png]

 _images/basemap_stations.png
3 T 4 37%@F Tue 1:55PM Q
QualityControl

SeismoStations

Seismo Stations
20110915.19310408.bhz.pkl

Black triangles: deleted stations
Red Points: selected stations

Updates Available [et |
118 X&' vour computer will restart to it
complete these updates [(Restart | [
-1
e — T4 Depth:
) | Gearc:

20 30
(=SS
—_— o quals
loe]t qu
——

@00 [example_pkl_files — python — 80x24

dhcp-10-101-89-46: example_pk1_files lklohs ls

20110915, 19310408. bhz. pkl 20120101.05275598. mcp

20120101.05275598. bhz. pkl loc.sta

dhcp-10-101-89-46: example_pkl_files 1kloh$ ttpick.py 20110915.19310408. bhz. pkl
Read 163 seismograns with sampling interval: 0.025080s
Found phase to be: P

~-> Run ICCS at window [-15.8, 15.0] wrt t0. Write to header: t1
Convergence criterion: coef

=== Tteration 0 : epsilon

Tteration 1 : 0.008825

Tteration 2 : 0.000095

Array stack converged... Done. Mean corrcoef=0.928

—-> change opts. reltime from @ to 1
Average ccc=0.93, snr=12.12, coh=0.66

Weighted average quality: ccoxl/3+snrxl/3+cohk1/3 = 4.57
Nearest Station selected: AR.UISA

Nearest Station selected: US.WVOR

Nearest Station selected: UW.HOOD
Nearest Station selected: US.HAWA

US.MNTX qual=e.
CC.WIFE qual=e.90/
EP.KIDD qual=0.90/
US.NLWA qual=e.90/
T ARV aual=@ 91/

_images/count_stations.png
-bash-3.2$ s
bht eviist sac.tar sodpkL. log
bhz sac sodcut. log

~bash-3.25 cd htz

—bash: cd: htz: No such file or directory

~bash-3.25 cd btz

—bash: cd: btz: No such file or directory

~bash-3.25 cd bhz

~bash-3.2 1s

20120101, 05275598 bhz. pk 1 20120123.16045298. bhz. pk1
20120101, 05275598 . mcp. 20120124, 00520523 bhz . pk1
20120109, 04071467 . bhz . pk1 20120130, 05110095 bhz . pk1
20120115.13401954. bhz . pk 1 getsta.py
20120115.14213137 . bhz. pk1 Toc.sta

“bash-3.25 ./getsta.py +.pklll

_images/SACP2_popup.png
Figure 2

20 -10 0 10 20 30
Time - T0 [s]

20 -10 0 10 20 30
Time - T1 [s]

20 -10 [10 20 30
Time - T2 [s]

20 -10 0 10 20 30
Time - T3 [s]

_images/filtering-interface.png
Arrav Stack
1860606

Butterworth Filter

20120109.04071467 bh7 okl

Select Order:

Figure 2

o1
o2
o3
o1
o5

Signal vs Time

Low Freg: 0.005
High Freq: 0.008
Order: 1

— onginal
— Fitered

=5 0
Time (s)

Amplitude vs frequency

Amplitude Signal

Original
Fitered
Butterworth Fiter

0.020
Frequency (Hz)

_images/help-iccs.png
Usage: iccs.py [options] <sacfile(s) or a picklefile>

Options:

-h, --help show this help message and exit

-S SRATE, --srate=SRATE
Sampling rate to load SAC data. Default is None, use
the original rate of first files.

-1 IPICK, --ipick=IPICK
SAC header variable to read input time pick.

-w WPICK, --wpick=WPICK
SAC header variable to write output time pick.

-t TWCORR, --twcorr=TWCORR
Time window for cross-correlation. Default is [-15.0,
15.0] s.

-f FSTACK, --fstack=FSTACK
SAC file name to save final array stack.

-p, --plotiter Plot array stack of each iteration.

-a, --auto_on Run ICCS and select/delete seismograms automatically.

-A, --auto_on_all Run ICCS with -a option but initially use all
seismograms.

-q MINQUAL, --minqual=MINQUAL
Minimum quality factor (ccc,snr,coh) for auto
selection. Defaults are 0.50 0.50 0.00.

-n MINNSEL, --minnsel=MINNSEL
Minimum number of selected seismograms for auto
selection. Default is 5.

_images/egplot.png
(A)

87

Distance [°]
o0 o0 00
-b ar o

(o]
w

(o]
N

81

80

(B)

NFROWOVWoONOUTRhWN

e number
=

o 13

(C)1s

1.0
0.5
0.0
-0.5
-1.0

640 660 680 700 720 740 760
Time [s]

Time - TO [s]

TA121A
TA.CO6D

TA.BOSD

TAF4D
AR

TAI04A

TA-BQ4R

ALY

TA.109C
TA.121A
TA.214A
TA.A04D
TA.BO5D
TA.CO6D
TA.DO3D
TA.D04D
TA.E04D

1 TA.FO4D

TA.FO5D
TA.GO5D

TA.102D
TA.I03D
TA.I04A
TA.I05D
TAJO1D
TA.JO4D
TA.JO5D
TA.KO2D
TA.K04D

_images/egsac-109c.png
1.5

1.0

0.5

0.0

-0.5

-1.0
6

le-5

Delta = 0.025 s TA.109C.__.BHZ.sac
Delta = 2.000 s

00

650 700 750 800 850 900
Time [s]

_images/help-mccc.png
Usage: mccc.py [options] <sacfile(s) or a picklefile>

Options:
-h, --help show this help message and exit
-S SRATE, --srate=SRATE
Sampling rate to load SAC data. Default is None, use
the original rate of first file.
-W WINDOW, --window=WINDOW
Use a correlation window length in seconds.
-I INSET, --inset=INSET
Use a time length of inset seconds from initial pick
time to start of correlation window.
-T TAPER, --taper=TAPER
Apply a Hanning taper with width of taper seconds.
Half of taper extends beyond both sides of window.
-s SHIFT, --shift=SHIFT
Shift in number of samples in cross-correlation.
-1 IPICK, --ipick=IPICK
SAC header variable to read initial time pick.
-w WPICK, --wpick=WPICK
SAC header variable to write MCCC time pick.
-p PHASE, --phase=PHASE
Seismic phase name: P/S .
-1 LSQR, --1sqr=LSQR LSQR method to solve egs: nowe, lnco, lnre.
-0 OFILENAME, --ofilename=0FILENAME
Output file name. Default is $evdate.mc$phase
-a, --allseis Use all seismograms. Default to use selected ones.

_images/help-sac2pkl.png
Usage: sac2pkl.py [options] <sacfile(s)>

Options:
-h, --help show this help message and exit
-s, --s2p Convert SAC files to pickle file. Default is True.
-p, --p2s Convert pickle file (save headers) to SAC files.

-d DELTA, --delta=DELTA

Time sampling interval. Default is -1.000000
-0 OFILENAME, --ofilename=0FILENAME

Output filename which works only with -s option.
-z ZIPMODE, --zipmode=ZIPMODE

Zip mode: bz2 or gz. Default is None.

_images/help-sacplot.png
Usage: sacplot.py [options] <sacfile(s) or a picklefile>

Options:
-h, --help show this help message and exit
-f FILL, --fill=FILL Fill/shade seismogram with positive (1) or negative
(-1) signal. Default is none (@).
-r RELTIME, --relative-time=RELTIME
Relative time to a time pick header (t0-t9). Default
is -1, None, use absolute time.

-u, --upylim Update ylim every time of zooming in.
-k, --pick Plot time picks.
-w, --twin Plot time window.

-x XLIMIT, --xlimit=XLIMIT
Left and right x-axis limit to plot.

-y YNORM, --ynorm=YNORM
Normalize ydata of seismograms. Effective only for
positive number. Default is 2.000000.

-Y, --ynormtwin Normalize seismogram within time window.

-S SRATE, --srate=SRATE
Sampling rate to load SAC data. Default is None, use
the original rate of first file.

-a, --azim Set baseline of seismograms as azimuth.

-b, --bazim Set baseline of seismograms as backazimuth.

-d, --dist Set baseline of seismograms as epicentral distance in
degree.

-D, --distkm Set baseline of seismograms as epicentral distance in
km.

-i, --index Set baseline of seismograms as file indices (SAC P1
style).

-z, --zero Set baseline of seismograms as zeros (SAC P2 style).

-m, --stack_mean Plot mean stack of seismograms.

-s, --stack_std Plot std of mean stack of seismograms with color fill.

-C, --color Use random colors.

nav.xhtml

 Table of Contents

 		
 Welcome to AIMBAT’s documentation!

 		
 AIMBAT

 		
 Overview

 		
 Documentation

 		
 Requirements

 		
 Installation

 		
 Citation

 		
 Authors’ Contacts

 		
 Contributors

 		
 Licence

 		
 Installation and Upgrades

 		
 Requirements

 		
 Python

 		
 Compilers

 		
 Operating System

 		
 Installing AIMBAT

 		
 pip - Python package installer

 		
 conda users

 		
 Installing AIMBAT with pip

 		
 Example Data

 		
 Upgrading AIMBAT

 		
 Uninstalling AIMBAT

 		
 Using AIMBAT

 		
 Seismic Analysis Code (SAC)

 		
 SAC Input/Output procedures for AIMBAT

 		
 Converting from SAC to PKL files

 		
 Converting from PKL to SAC files

 		
 Parameter Configuration

 		
 Backend

 		
 Configuration File

 		
 SAC Data Access

 		
 Python Object for SAC File

 		
 Python Pickle for SAC Files

 		
 SAC Plotting and Phase Picking

 		
 SAC Plotting

 		
 SAC Phase Picking

 		
 Measuring Teleseismic Body Wave Arrival Times

 		
 Automated Phase Alignment

 		
 Picking Travel Times

 		
 What the Alignments Stand For

 		
 Post Processing

 		
 Picking Travel Times does not work

 		
 Alternative Qt GUI for Measuring Arrival Times

 		
 Developing AIMBAT

 		
 Citations

 		
 Credits

 		
 Lead Developers

 		
 Contributers

 		
 Changelog

 		
 aimbat-v1.0.5

 		
 aimbat-v1.0.4

 		
 aimbat-v1.0.3

 		
 aimbat-v1.0.2

 		
 aimbat-v1.0.1

 		
 aimbat-v1.0.0

 		
 aimbat-v0.3-alpha1

 		
 aimbat-v0.2

 		
 aimbat-0.1.2

 		
 aimbat-0.1.1

 		
 aimbat-0.1

_images/pick_travel_times.png
inder File Edit View Go Window Help £ Thu 8:21 PM _ Lay Kuan

Figure 1

|

- vy mud

US.LRAL qual=0.55/2.0/0.16
TA.Y50A qual=0.56/1.3/0.17
TA.Y45A qual=0.56/2.2/0.17 trial.laykuan.xml
TA.240A qual=0.58/1.2/0.18
US.NHSC qual=0.58/2.3/0.19
TA.142A qual=0.61/0.9/0.21
VORITES TA.Z43A qual=0.62/1.5/0.21

i

0o
>)

All My Files = = = = TA.441A qual=0.62/1.2/0.22

> AirDrop 7 » TA.Z42A qual=0.63/1.4/0.23
" Ikloh@vanuatu.earth.northwestern.edu: ~/DATA/bhz — python — 80x24

\ Applications || 20120101.052755 20120109.040714 (20120115.134019" 20120115.142131
7 Desktop 98.bhz.pkl 67.bhz.pk 54.bhz.pkl 37.bhz.pkl = o ETA bh lrevortscripo] — —
3 sample. Deleted.

oS - - N N Seismogram sac/Event_2012.01.15.13.40.19.540/US. TPNV.00.BHZ does not have enough
) Downloads sample. Deleted.

Seismogram sac/Event_2012.01.15.13.40.19.540/US. TZTN.00.BHZ does not have

VICES sample. Deleted.
| NORA 20120123.160452 20120124.005205 20120130.051100 20120101.052755 Seismogram sac/Event_2012.01.15.13.40.19.540/US.WRAK. 00, BHZ does not have

98.bhz.pki 23.bhz.pki 95.bhz.pki 98.mcp ‘a0 “sample. Deleted.

] Sublime... & ——em— A B seiom
] B ogram sac/Event_2012.01.15.13.40.19.540/US.WUAZ. 00.BHZ does not have enough
- - s M A ey Ay PRI oo, Deteted.

AvED
S Seismogram sac/Event_2012.01.15.13.40. 19.548/US.WVOR. 80. BHZ does not have
2 Al Tron sample. Deleted.
GS tsta. loc.sta
S gestapy e —> Run ICCS at window [-15.0, 15.0] wrt 0. Write to header: t1
Convergence criterion: coef
> Orange Iteration 0 : epsilon
Tteration 1 : 0.140096
Yelle
- Yellow Iteration 2 : 0.002533
== Tteration 3 : 0.000037

Array stack converged... Done. Mean corrcoef=0.780

evduprm. sh
evrotate. sh
—bash-3.2$ |

—-> change opts. reltime from @ to 1
Average ccc=0.78, snr=2.81, coh=0.39
Weighted average quality: Ccox1.000+snr+d.000+coh+d.000 = 1.33

path ... 1

Issue 7.

bugs.pyth YATA 78/1.9/0.3

gc;éﬂ,z TA.541A qual=0.78/2.4/0.38
i9 pt.

ot of ass{ TA.Y48A qual=0.79/1.7/0.38

Inctallir

_images/pkl_to_sac_conversion.png
8.0 exam) files — bash — 80x24.

dhcp-10-101-89-46: example_pkl_files lkloh$ s

20110915.19310408. bhz. pk L 20120101.05275598.mcp

20120101.05275598. bhz. pkl Toc.sta

dhcp-10-101-89-46: example_pkl_files lkloh$ sac2pkl.py —p2s 20110915.19310408.bh
2.pkl

File conversion: pkl —> sac

dhcp-10-101-89-46: example_pkl_files lklohs I

_images/help-sacppk.png
Usage: sacppk.py [options] <sacfile(s) or a picklefile>

Options:
-h, --help show this help message and exit
-f FILL, --fill=FILL Fill/shade seismogram with positive (1) or negative
(-1) signal. Default is none (@).
-r RELTIME, --relative-time=RELTIME
Relative time to a time pick header (t0-t9). Default
is -1, None, use absolute time.

-u, --upylim Update ylim every time of zooming in.
-k, --pick Plot time picks.
-w, --twin Plot time window.

-x XLIMIT, --xlimit=XLIMIT
Left and right x-axis limit to plot.

-y YNORM, --ynorm=YNORM
Normalize ydata of seismograms. Effective only for
positive number. Default is 2.000000.

-Y, --ynormtwin Normalize seismogram within time window.

-S SRATE, --srate=SRATE
Sampling rate to load SAC data. Default is None, use
the original rate of first file.

-b, --boundlines Plot bounding lines to separate seismograms.
-n, --netsta Label seismogram by net.sta code instead of SAC file
name.

-m MAXNUM, --maxnum=MAXNUM
Maximum number of selected and deleted seismograms to
plot. Defaults: 25 and 5.

-s SORTBY, --sortby=SORTBY
Sort seismograms by i (file indices), or 0/1/2/3
(quality factor all/ccc/snr/coh), or a given header
(az/baz/dist..). Append - for decrease order,
otherwise increase. Default is i.

_images/output_list.png
Access

8 00 | example_pkl_files — vim — 108x24
ED o |

g MCCC processed: unknown event at: Fri, 29 Aug 2014 11:42:15 EST

of station, mccc delay, std, cc coeff, cc std, pol , to_times , delay_times

=

4 AR.113A -1.6201 0.0209 ©0.9074 0.0765 0 AR.113A._.BHZ 678.9673 1.6495
AR.319A 11.6791 0.0361 ©0.8830 0.0658 © AR.319A.__.BHZ 691.8687 2.0473
a AR.UL5A 12.8982 ©0.0309 ©0.8842 0.0857 @ AR.UI5A.__.BHZ 693.3771 1.7580
AR.WI13A 4.1460 0.0307 ©0.8842 0.0904 0 AR.W13A.__.BHZ 684.5807 1.8021
'U AR.X16A 11.0675 0.0261 ©0.8673 0.1030 © AR.X16A.__.BHZ 691.3650 1.9394
% AR.X18A 16.1568 0.0290 ©0.8432 0.1088 © AR.X18A.__.BHZ 696.8047 1.5890
9 AZ.BZN -10.0634 ©0.0178 ©.9072 0.0672 0 AZ. .BHZ 670.4364 1.7371
2 AZ.CPE -13.6968 ©0.0224 ©.8904 0.0823 0 AZ. .BHZ 667.1692 1.3709
AZ.CRY -10.1136 ©0.0238 ©.8979 0.0786 0 AZ. .BHZ 670.3904 1.7328
AZ.FRD -9.8585 0.0209 ©0.9107 0.0704 0 AZ. .BHZ 670.6781 1.7002
AZ.HWB -12.7557 0.0557 ©.8321 0.1114 0 AZ. .BHZ 668.0825 1.3987
wl AZ.KNW -9.7108 0.0402 ©0.8884 0.0784 0 AZ. .BHZ 670.8972 1.6289
o AZ.LVA2 -9.9828 ©0.0315 ©0.8954 0.0814 0 AZ. BHZ 670.4258 1.8283
| AZ.MONP2 -10.7148 0.0272 ©0.8906 0.0823 0 AZ. __.BHZ 669.6515 1.8706
' Az.PFO -9.0966 0.0210 ©0.9027 0.0763 0 AZ.PFO.__.BHZ 671.5171 1.6232
AZ.RDM -10.4369 ©0.0268 0.8968 0.0821 @ AZ.RDM.__.BHZ 670.1752 1.6248
"9 AZ.SCI2 -18.6104 0.0516 ©0.7419 ©0.0598 @ AZ.SCI2._ .BHZ 662.1949 1.4316
AZ.SMER -12.4160 ©0.0326 0.8998 ©0.0735 @ AZ.SMER.__.BHZ 668.5347 1.2862
AZ.SND -9.6575 0.0122 ©0.9147 0.0584 0 AZ.SND.__.BHZ 670.7992 1.7802
AZ.SOL -14.3948 ©0.0520 0.8295 ©0.0768 @ AZ.SOL.__.BHZ 666.5106 1.3314
AZ.TRO -9.0127 0.0220 ©.9121 0.0658 © AZ.TRO.__.BHZ 671.3926 1.8316

_images/qttpick_gui.png
aimbat-qgttpick

Sac P1 Align
ICCS TO-->T1
Sync
Sac P2
2 T2 and Time Window
Map Delay Times Refine
- ICCS T2-->T2
Save Finalize
MCCC T2-->T3
i Sort
it
o by Name/Qual/Hdr
Filter

Plot More Traces

on Stack/Traces

Parameter Value

Filename N/A Ly
Quality ccc i)
Header N/A Ly
HeaderDiff ~ N/A i)
Sort_Increase)

Confirm_Sort_Parameters

- E

band bandpass)
order 2 1)
lowFreq 0.05 Hz &)
highFreq 2 Hz 1)
reversepass | Ly
seis Stack)
apply O)

Confirm_Filt_Parameters

-10

-12

-14

-16

-18

-20

-22

-24

-26

Stack

/Original

S Fittered—
1
-40 -30 -20 -10 30 40
Time - T2 [s]
Traces
UW.HOOD qual=0.00/1.2/0.09 j i
TA.F@4D qual=0.91/2.8/0.59 i ii A"_ B — o o o _—
UN.STOR qual-0.92/2.1/0.55 i A‘"VV"“'V -~ - e
TA.D@4D-qual=0.93/2.7/0.63 1 ¥ A"‘v-v — —————— = _ . I
TA.GESD qual=0.93/2.4/0.64 — i ET; A~7 B - . . -
TA.H@4D qual=0.95/2.3/0.68 - | i A‘v‘*‘w“’ SR : [I
UW.MOLL qual=0.95/2.3/0.66 o Yy Ul P e B — N
UW.WOLL qual=8.95/2.3/8.66 o — e ——
TA.J04D qual=0.95/2.2/0.69 S | EH?LA.vA,_‘—-_v- P P . _ o
TA.E@4D qual=0.95/2.3/0.69 ’HT A<' N~ — — [I
UW.BRAN qual=0.95/2.2/0.58 S iiﬁAv-ﬁ V™ ——————————— - — B
TA.105D qual=0.95/2.2/0.69 — — H A‘v-vA‘_____‘ o o -
UW.YACT qual=0.95/2.1/0.65 — ﬂﬁA‘AVAW o o o — . o
UW.KENT qual=0.95/2.1/0.67 4 i oA VA — M o B
TA.AG4D qual=0.96/1.8/0.70 . i. i H A>v_v_‘A'A'wv-'A‘-‘ N B _
UW.SP2 qual=0.96/2.0/0.63 [. H y b ‘vva_,L‘ -~ ——— - _
U0.PINE qual=0.96/2.2/0.69 iﬁTAV N —————— .
L i e — . _ .
CI.ARV —qual=0.96/1.3/0.73 4 hl‘—ﬁ —
UW.WISH qual=0.96/2.1/0-73 . +H A—AvA o — —— S .
U0.BUCK qual=0.96/2.2/0.71 o I **LA'v- V_Aﬁ —— o . .
UN.LEBA qual=0.97/2.0/0.71 S S T Av_vA —— ———— . B
- 1/0-74 EHL‘ - e e e e R
US WVOR qu 9/0 .74 1H AvAvA o I S . —
US.WVOR qual=8.97/1.9/0.74 | . w-
UW.RATT qual=0.97/1.8/0.74 o ! EHHL;__A — S
UW.OMAK qual=0.97/1.5/0.58 - PHAL_A R .
SC.Y22A qual=0.98/1.3/0.78 e -—v E— R I
1 EC 3/0.79 i “ v,‘ ———— — — B o
CI.DEC .79 w- o
U N Wl -‘ .. — . .
e o
o B . . - -
& —~———— ———
€E-WIFE -qual=0.98/2.0/0.79 i'} !!A'AvAv‘A‘ . _
UN.LRIV qual=0.98/1.9/0.75 ':i !!Av N —— e ————— . .
CI.PASC qual=0.98/1.3/0.80 —— - i “‘___ e [B .
CI.PASC qual=0.98/1.3/0.80 et ~ ~——
CI.DI3 qual=0.98/1.3/0.81 o BRI [- o o
IIII ||I
UW.RADR qual=0.98/1.9/0.79 — . A"*AV""‘ —— .
Hw C - OIA_R;_ II i “I A; - - B ————— . — B —
LTRSS S ERTA st i o ” '
AR.W13A /1.5/0.68 ‘—‘v‘ e e — - T S [
A7 HWR A/0 81 Ny 1 ‘- . - .
AZ HuB A4/0.81—— — o -~ ~—— —— — —— -
UW.LTY 8/0.77 — :HA,_A - e S _ I
u .8/0. e —
AR X16A 5/0.68 MA.‘ A _ — R _ o B
.X16A qual=0.98/1.5/8.6: - A
IW.PLID qual=0.98/1.8/0.82
CC.0BSR qual=0.98/1.9/0.82
CI.CNC qual=0.98/1.4/0.82
LAD 210A a1 n 00/ om cc . v A - . o
-40 -30 -20 -10 0 10 20 30 40

Time - T2 [s]

_images/qttpick_gui_filter_stack.png
ece aimbat-gtpick

Sac P2
Stackc
R o ! |
| Plot Delay Times BT . /original 0 i
o
{ Save lccs 12512 7 ! !
45 =Y EY B0 T 5 % El
0 i Finalize Time - 70 [s]
MCCC T2--5T3
Fiter Sort
on Stack/Traces by Name/Qual/Har Traces

10

Filename N/A
Quality cce AR 319)/qqal-0.97/ 5.6/0.74

Header N/A 12

HeaderDiff N/A 4
/T3
Sort Increase @ AR. 1154 qual=.99/ 5.4/0.83

| Confirm_Sort_Parameters |

ARNI3A qual-0.99/ 6.2/0.53
band

lowFreq 0.05.

AR.UISA qual-0.99/ 5.5/0.84

highFrea 2

reversepass | |

seis Stack AR.XI8A qual-0,99/ 4.7/0,84

AR.XI6A ual-0.99/ 5.1/0.85

order 2 i

_images/prog-egplot.png
import matplotlib.pyplot as plt
import matplotlib.transforms as transforms
from pysmo.aimbat.plotphase import getDataOpts, sacpl, sacp2, sacprs

figure axes

fig = plt.figure(figsize=(9,12))
rectp2 = [.09, .050, .8, .15]
rectpl = [.09, .245, .8, .33]
rectp® = [.09, .620, .8, .36]
axp2 = fig. add axes(recth)

axpl = fig.add_axes(rectpl)

axp@ = fig.add_axes(rectp®)

read data and plot

gsac, opts = getDataOpts()

prs

opts.ynorm = .95

saclist = gsac.saclist

prs = sacprs(saclist, opts, axp@)

pl

opts.ynorm = 1.7

pl = sacpl(saclist, opts, axpl)

p2

opts.reltime = 0

p2 = sacp2(saclist, opts, axp2)

set x limits

axp@.set_x1im(625, 762)

axpl.set_x1im(625, 762)

axp2.set_xlim(-45, 65)

numbering

axs = [axp@, axpl, axp2]

labs = 'abc'

for ax, lab in =zip(axs, labs):

="' +lab + ")’

trans = transforms.blended_transform_factory(ax.transAxes, ax.transAxes)
ax.text(-.05, 1, tt, transform=trans, va='center', ha="right', size=16)

fig.savefig('egplot.pdf', format='pdf')
plt.show()

_images/prog-egsac.png
from pysmo.core.sac import SacIO

from numpy import linspace, array

from scipy import signal

import matplotlib.pyplot as plt

import matplotlib.transforms as transforms

read sac file:

ifilename = 'TA.109C.__ . BHZ'

sacobj = SacIO.from_file(ifilename)

b = sacobj.b

npts = sacobj.npts

delta = sacobj.delta

X = linspace(b, b+npts*delta, npts)

y = array(sacobj.data)

resample:

deltanew = 2.0

nptsnew = int(round(npts*delta/deltanew))

x2 = linspace(b, b+npts*delta, nptsnew)

y2 = signal.resample(y, nptsnew)

plot:

fig = plt.figure(figsize=(12,4))

ax = fig.add_subplot(111)

trans = transforms.blended_transform_factory(ax.transAxes, ax.transAxes)
plt.plot(x, y, 'b-', label='Delta = {0:.3f} s'.format(delta))
plt.plot(x2, y2, 'r--', label="Delta = {0:.3f} s'.format(deltanew))
plt.xlabel(' Time [s]')

plt.legend(loc=2)

plt.ticklabel_format(style="sci', scilimits=(0,0), axis='y"')
ax.text(0.98, 0.9, ifilename, transform=trans, va='center', ha="right")
plt.subplots_adjust(left=0.05,right=0.98,bottom=0.13,top=0.9)
plt.x1im(600,900)

plt.ylim(-1.2e-5,1.8e-5)

fig.savefig('egsac.pdf', format='pdf")
plt.show()

_images/qttpick_gui_filter_trace.png
aimbat-gtpick

Sac P2

1CCS T0-->T1

Sync

_PlotDelay Times | | 15 ung Time Window

Refine
1CCS T2-->T2

Save

Finalize

Qi MCCC T2--5T3

0
Time - T0 [s]

Filter Sort
by Name/Qual/Hdr

Filename N/A
Quality cce
Header N/A
HeaderDiff N/A
Sort_Increase €

Confirm_Sort_Parameters

band
order 2

lowFreq 0.05.

highFreq

reversepass

10

AR.319A qual-0.97/ 5.6/0.74

12
/T3

AR113A qual-0.99/ 5.4/0.83

ARW13A qual-0.99/ 6.2/0.83

AR.UISA qual-0.99/ 5.5/0.84

ARXIBA qual-0.99/ 4.7/0.84

ARXI6A qual-0.99/ 5.1/0.85

_images/qttpick_gui_p1.png
2
&
?
o
S
B
o
l
S S S S S 3 S s 3
§ g 8 8 8 g H g
e
&
S
&
o
o 5
£
s
B
o
al
s S S S 3 3 S S 3
8§ g 8 8 8 g g g
e
&
?
°
E
£
S
B
o
l
e
&
S
&
e
o 5
£
s
B
o
al

-8

-100
-120
-140
-160

_images/qttpick_gui_p2.png
1e-05

-1e-05

1e-05

-1e-05

1e-05

-1e-05

1e-05

-1e-05

40 30 20 EL) 0 0 20 30 20
Time - T1 [s]

40 30 20 EL) 0 0 20 30 20
Time - T2 [s]

40 30 20 EL) 0 0 20 30 20
Time - T3 [s]

_images/selecting-time-window-highlight.png
@ python File

Edit

Window _Help

Q@m®™D t T«

94% @ Thu348PM Q iE

8 0 0

QualityControl

Array Stack

20110915.19310408.bhz.pkl

Align
sync Gearc: 83.26
-30 —20 —10 Seismdgrams 10 20 3
Refine - I z —— \;\.. HOOD qual=0.38/1.3/0.0
- - iy Qual= CCC/SNR/COH
Finalize 1 " I: e= qual=0.73/13.5/0.31
2 T ‘ — UN.STOR 75/41.9/0.33
3 iny Say TA.DB4D 76/13.0/0.35
ot 4 U, ANMO 78/3.5/0.37
5 AZ.SCI2 79/2.0/6.39
6| T UKL MEGH 80/3.3/0.40
Prev. 7 d VA — TA.GOSD 82/20.0/0.42
8| T TA.FO4D 82/38.7/0.42
9 TA.Y22D 83/5.0/0.44
i [10 Y, SC.Y22A 84/3.9/0.45
erat: 1 TA.HO4D 84/35.9/0.46
erat; Zosr) 2 'h" US.HVCO 86/3.8/0.48
s 13 T > TA.105D 86/35.7/0.49
Jr— 1 - > TA.E04D 86/47.1/0.50
ange _ 15 — TA.A04D 87/21.4/0.50
-2 516 “ Y TA.J04D 87/23.3/0.50
y Quit E 17 \/ U0.BUCK 87/27.1/0.50
n 1C 218 v CC.0BSR 87/6.1/0.51
e Y 19 L s~ | uu.KenT 87/4.4/0.51
Y g 20 Y, TA.W18A 88/4.5/0.52
ret hindill La U YACT 89/41.4/0.53
-tad 2 v AZ.SOL 89/6.7/0.54
e ce 23 US.NEW 89/13.2/0.54
cd @ o 2 UN.RADR 89/20.6/0.54
e 25 UNl.SP2 89/19.4/0.55
;. 26 Y TA.JO5D 89/19.3/0.55
27 . TA.I02D 90/24.7/0.55
Filter 28 : TA.121A 90/4.3/0.56
29 ! AZ.HUB 90/3.4/0.55
30 F US.MNTX 90/3.7/0.56
Map of 31 a CC.WIFE 90/16.6/0.56
stations | 32 J EP.KIDD 90/4.1/0.57
33 T US.NLWA 90/15.4/0.57
24 _a— e 1l et ary 9175 a0 57

_static/NU_Logo_purple.jpg
NORTHWESTERN
UNIVERSITY

_images/sac_to_pkl_conversion.png
-bash-3.2$ sac2pkl.py -s *.BHZ.sac
File conversion: sac —> pkl
-bash-3.2¢ 1s

__.BHZ.sac LBBR._.BHZ. CILBEL._.BHZ.sac
sac.pkl

_images/sacppk.png
N Figure 1

Prev.

Next

save

Quit

leted)

© ® N o v s wN

Trace number

21
2
23
2
25

620

700 720

Time [s]

740

760
Page 0 of (0,51

fSelected|
AR113A__BHZ

AR319A__BHZ
ARULSA__BHZ
ARWI3A__BHZ
ARX16A_BHZ
ARX18A_BHZ

AZ.BZN.__BHZ

AZ.CPE.__BHZ
AZ.CRY__BHZ
AZ.FRD.__BHZ

AZHWB._BHZ
AZKNW.__BHZ
AZIVA2_BHZ
AZMONP2._BHZ
AZPFO__BHZ
AZRDM._BHZ
AzSCI2._BHZ
AZSMER_BHZ
AZSND.__BHZ
AZSOL_BHZ
AZTRO.__BHZ
AZWNC._BHZ
BK.CMB.00.BHZ
BK HUMO.00.8HZ
BK.MCCM.00.8HZ

£10|0]++]

_static/file.png

_static/plus.png

_static/minus.png

